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Abstract: Using a common tangent vector field to a surface along a curve, in this study we discussed
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Minkowski 3-space. The parametric equation resulting from the RMDF frame for an imbricate-ruled
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1. Introduction

For thousands of years throughout history, mathematicians, philosophers, and scientists have
studied the surface idea. In the process, differential geometry’s advancements have substantially
strengthened the theory of surfaces. The pioneers in this field of study were Gauss, Riemann, and
Poincare, but Monge also made some important contributions to the study of surfaces. Surfaces are
represented as graphs of functions of two variables according to Monge’s methodology.

A surface that can be created by moving a straight line along a spatial curve is a ruled
surface [1, 2]. Since they have relatively simple features and enable us to analyze intricate surfaces,
ruled surfaces are recommended for study. Among the main topics of research on ruled surfaces are
their classification, features attributed to the base curve, geodesics, shape operators of surfaces, and
the study of developable and non-developable ruled surfaces.

Since the Lorentzian metric is not a positive definite metric, the differential geometry of ruled
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surfaces in the Minkowski 3-space E3
1 is far more complex than in the Euclidean event. In contrast to

the distance function in Euclidean space, which may only be positive, the distance function ⟨, ⟩ can be
positive, negative, or zero.

Similar properties may be seen in the Euclidean space when ruled surfaces in the Minkowski space
are surveyed, but the structure of the Minkowski space leads to some fascinating contrasts. Ruled
surfaces in Minkowski space have more complicated geometry than those in Euclidean space, since
their characterization is dependent on both the direction and the base curve. Regulated surfaces can be
categorized as developable or non-developable, as is currently understood [3–16].

A Darboux frame is a natural moving frame constructed on a surface; it is the analog of the Frenet-
Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a
surface embedded in the Euclidean space [17, 18].

The aim of this study is to develop a brand-new frame called the rotation-minimizing Darboux
frame (RMDF), which travels along a spacelike curve that entirely encircles a timelike surface in the
coordinate system E3

1. We also demonstrate how to use RMDF to create imbricate-ruled surfaces in
Minkowski 3-space using the vectors of the Frenet frame of non-null space curves. Next, depending
on the curvatures of the base curve, requirements are simultaneously given for each imbricate-ruled
surface to be minimal or developable. Asymptotic, geodesic, and curvature lines are examples of
parametric curves that are characterized by these requirements. An example concerning imbricate-
ruled surfaces are given at the conclusion of the inquiry.

2. Preliminaries

The definition of the Lorentzian product in Minkowski three-dimensional space E3
1 is

L = −ds2
1 + ds2

2 + ds2
3,

where (s1, s2, s3) is E3
1’s coordinate system. The characteristics of an arbitrary vector ζ ∈ E3

1 are as
follows: spacelike if L(ζ, ζ) > 0 or ζ = 0, timelike if L(ζ, ζ) < 0, and null if L(ζ, ζ) = 0 and ζ , 0.
Similarly, a curve µ = µ(s) can be spacelike, timelike, or null if its µ′(s) is spacelike, timelike, or null.
The vector product of vectors u = (u1, u2, u3) and v = (v1, v2, v3) in E3

1 is defined by [18, 19]

u × v = (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1).

Consider a timelike embeddingΘ : U → E3
1 from open subset U ∈ E2 represented by a regular timelike

surface Θ(s, u). The Θ’s tangent vectors are

Θs =
∂Θ

∂s
, Θu =

∂Θ

∂u
.

The unit normal vector to Θ given as

N =
Θs × Θu

∥Θs × Θu∥
. (2.1)

The coefficient of first and second fundamental forms given as:

E = ⟨Θs,Θs⟩, F = ⟨Θs,Θu⟩, G = ⟨Θu,Θu⟩,

e = ⟨N,Θss⟩, f = ⟨N,Θsu⟩, g = ⟨N,Θuu⟩.
(2.2)
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The Gaussian and mean curvatures are defined as:

K(s, u) =
eg − f 2

EG − F2 , H(s, u) =
Eg − 2F f +Ge

2(EG − F2)
. (2.3)

Let ϕ : I ⊆ R → Θ is a regular spacelike curve with timelike binormal on Θ. Denoted {T,N, B} be the
moving Frenet frame of ϕ, then {T,N, B} has the following properties: [1, 18–20]:

T ′(s) = κ(s) N(s),
N′(s) = −κ(s) T (s) + τ(s) B(s),
B′(s) = τ(s) N(s),

(2.4)

where
(
′ =

d
ds

)
, L(T,T ) = L(N,N) = −L(B, B) = 1, L(T,N) = L(N, B) = L(T, B) = 0 and κ(s),

and τ(s) are the curvature functions of ϕ. For the unit vector P defined by P = N × T , the Darboux
frame {T,N, P} associated with ϕ(s) in E3

1 satisfying the equations [1, 18]:

T ′(s) = κg(s)N(s) + κn(s) P(s),
N′(s) = −κg(s) T (s) + τg(s) P(s),
P′(s) = κn(s) T (s) + τg(s)N(s),

(2.5)

where L(T,T ) = L(N,N) = −L(P, P) = 1 and L(T,N) = L(T, P) = L(N, P) = 0. Here, the normal
curvature κn(s), the geodesic curvature κg(s), and the geodesic curve τg(s) of ϕ can be obtained as
follows:

κn(s) = ⟨ϕ′′, P⟩,
κg(s) = ⟨ϕ′′,N⟩,
τg(s) = −⟨P,N′⟩.

(2.6)

3. Rotation-minimizing Darboux frame

It is well known that the Frenet frame along a space curve on a surface is the source of the Bishop
frame. In this section, by the same way we develop a brand-new alternative of the Darboux frame
known as the (RMDF) on a surface in Minkowski 3-space along a space curve. Next, we get the
intrinsic equations resulting from the RMDF for a generalized relaxed elastic line situated on an
orientated surface. Let ϕ = ϕ(s) be a regular spacelike curve moving at unit speed that has a timelike
binormal vector entirely affixed to a timelike surface Ψ in E3

1 through a Darboux frame (2.5). Let’s use
the notation {T,V1,V2} to denote an RMDF. A brief calculation demonstrates that

V1(s) = cosh θ(s)N(s) + sinh θ(s) P(s),
V2(s) = sinh θ(s)N(s) + cosh θ(s) P(s).

(3.1)

Differentiate (3.1) with respect to s and using (2.5), we have

V ′1(s) = −
(
κg(s) cosh θ(s) − κn(s) sinh θ(s)

)
T (s) +

(
τg(s) + θ′(s)

)
V2(s),

V ′2(s) =
(
− κg(s) sinh θ(s) + κn(s) cosh θ(s)

)
T (s) +

(
τg(s) + θ′(s)

)
V2(s).
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The equalities (3.1), on the other hand, are obtained by combining

T ′(s) = κg(s)N(s) + κn(s) P(s).

Then, we get

T ′(s) =
(
κg(s) cosh θ(s) − κn(s) sinh θ(s)

)
V1(s) +

(
− κg(s) sinh θ(s) + κn(s) cosh θ(s)

)
V2(s).

The derivative with respect to s produces the frame similarly to the previous frames:

T ′(s) =
(
κg(s) cosh θ(s) − κn(s) sinh θ(s)

)
V1(s) +

(
− κg(s) sinh θ(s) + κn(s) cosh θ(s)

)
V2(s),

V ′1(s) = −
(
κg(s) cosh θ(s) − κn(s) sinh θ(s)

)
T (s) +

(
τg(s) + θ′(s)

)
V2(s),

V ′2(s) =
(
− κg(s) sinh θ(s) + κn(s) cosh θ(s)

)
T (s) +

(
τg(s) + θ′(s)

)
V2(s).

Assume τg(s) = −θ′(s), the RMDF’s variation formula is given in the accompanying statement, which
reads as follows:

Theorem 3.1. Let ϕ = ϕ(s) be a spacelike curve lying fully on a timelike surface Ψ space E3
1 via to

Darboux frame (2.5). Then, the RMDF {T,V1,V2} is given by

T ′(s) = ξ1(s) V1(s) + ξ2(s) V2(s),
V ′1(s) = −ξ1(s) T (s),
V ′2(s) = ξ2(s) T (s),

(3.2)

where ξ1 and ξ2 are RMDF’s curvatures that are obtained by the relation:

ξ1(s) = κg(s) cosh θ(s) − κn(s) sinh θ(s),
ξ2(s) = −κg(s) sinh θ(s) + κn(s) cosh θ(s).

(3.3)

The angle θ(s) between N and V1 is given by

θ(s) = −
∫ s

0
τg ds,

also, we have the relation
ξ2

1 − ξ
2
2 = κ

2
g − κ

2
n. (3.4)

Corollary 3.1. Let ϕ = ϕ(s) be a spacelike curve lying fully on a timelike surface Ψ in space E3
1 via to

RMDF (3.2). If ϕ(s) is an asymptotic curve, then ξ1 and ξ2 satisfy

coth θ(s) = −
ξ1(s)
ξ2(s)

. (3.5)

Corollary 3.2. Let ϕ = ϕ(s) be a spacelike curve lying fully on a timelike surface Ψ in space E3
1 via to

RMDF (3.2). If RMDF’s curvatures are constants on a geodesic or asymptotic, then τg(s) = −θ′(s) = 0
and ϕ(s) will be a principal curve.

AIMS Mathematics Volume 9, Issue 5, 13028–13042.



13032

4. Characterizations of imbricate-ruled surfaces

This section examines specific imbricate-ruled surfaces as an application of the RMDF in the
Minkowski 3-space E3

1 for a given timelike surface and a spacelike curve completely resting on it. We
anticipate that researchers with competence in mathematical modeling will find our findings to be
valuable.

Definition 4.1. For a regular spacelike curve ϕ = ϕ(s) with timelike binormal vector and lying fully on
a timelike surface Ψ in E3

1. The TV1-imbricate-ruled surfaces via RMDF (3.2) of ϕ(s) are defined by

ΦT
V1

(s, υ) = T (s) + υV1(s),

Φ
V1
T (s, υ) = V1(s) + υT (s).

(4.1)

Theorem 4.1. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then TV1-imbricate-ruled surfaces (4.1) are developable surfaces.

Proof. Using (3.2), we obtained the first and second partial derivatives in the first equation (4.1) with
regard to s and υ, we get (

ΦT
V1

)
s
= −υξ1T (s) + ξ1V1(s) + ξ2V2(s),(

ΦT
V1

)
υ
= −ξ1T (s).

(4.2)

(
ΦT

V1

)
ss
= −[ξ2

1 − υξ
′
1]T (s) + [ξ′1 − υξ

2
1]V1(s) + [ξ′2 − ξ2(υξ1 − ξ2)]V2(s),(

ΦT
V1

)
sυ
= −ξ1T (s),

(
ΦT

V1

)
υυ
= 0.

(4.3)

The normal vector field of the surface ΦT
V1

(s, υ) may be ascertained by taking the cross-product of the
partial derivatives of the surface given by Eq (4.2)

UT
V1
=

(
ΦT

V1

)
s
×

(
ΦT

V1

)
υ

∥
(
ΦT

V1

)
s
×

(
ΦT

V1

)
υ
∥
=
ξ2V1(s) + ξ1V2(s)√

|ξ2
2 − ξ

2
1 |

.

With the aforementioned equation, we can obtain the first and second fundamental forms of ΦT
V1

’s
component parts as follows:

ET
V1
= υ2ξ2

1 + κ
2, FT

V1
= υξ2

1, GT
V1
= ξ2

1. (4.4)

eT
V1
=
ξ2(ξ′1 − υξ

2
1) − ξ2

[
ξ′2 − ξ2(υξ1 − ξ2)

]√
|ξ2

2 − ξ
2
1 |

,

f T
V1
= 0, gT

V1
= 0.

(4.5)

The Gaussian curvature KT
V1

and the mean curvature HT
V1

are determined using the data mentioned
above:

KT
V1
= 0,

HT
V1
=
ξ2

1

[
ξ2(ξ′1 − υξ

2
1) − ξ2

[
ξ′2 − ξ2(υξ1 − ξ2)

]]√
|ξ2

2 − ξ
2
1 |
[
(υ3 − 1)ξ2

1 + κ
2] .

(4.6)
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However, by applying the RMDF (3.2) and differentiating the second equation in (4.1) with regard to
s and υ to get the first and second partial derivatives, we obtain(

Φ
V1
T

)
s
= −ξ1T (s) + υξ1V1(s) + υξ2V2(s),(

Φ
V1
T

)
υ
= −ξ1T (s).

(4.7)

The normal vector field of the surface ΦV1
T (s, υ) is determined as follows:

UV1
T =

ξ2V1(s) − ξ2
1

V 2
(s)

√
|ξ2

2 − ξ
2
1 |.(

Φ
V1
T

)
ss
= [υκ2 − ξ′1]T (s) + [υξ′1 − ξ

′
1]V1(s) + [υξ′2 − ξ1ξ2]V2(s),(

Φ
V1
T

)
sυ
= ξ1V1(s) + ξ2V2(s),

(
Φ

V1
T

)
υυ
= 0.

(4.8)

The ΦV1
T ’s component of the first and second fundamental forms are obtained as:

EV1
T = ξ

2
1 + υ

2κ2, FV1
T = −ξ1, GV1

T = 1. (4.9)

eV1
T =

ξ2(υξ′1 − ξ
2
1) + ξ1(υξ′2 − ξ1ξ2)√
|ξ2

2 − ξ
2
1 |

,

f V1
T = 0, gV1

T = 0.

(4.10)

So, the Gaussian curvature and the mean curvature are given by

KV1
T = 0,

HV1
T =

ξ2(υξ′1 − ξ
2
1) + ξ1(υξ′2 − ξ1ξ2)

2υ2κ2
√
|ξ2

2 − ξ
2
1 |

. (4.11)

Corollary 4.1. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then the s-parameter curves of TV1-imbricate-ruled surfaces (4.1) are

i. not geodesic,

ii. asymptotic curves iff θ(s) = tanh−1
(κg
κn

)
or θ(s) = tanh−1

(κn
κg

)
.

Proof. Let ΦT
V1

(s, υ) defined by (4.1) due to RMDF (3.2) in E3
1 be imbricate-ruled surface. Since(

ΦT
V1

)
ss
× UT

V1
=

1√
|ξ2

2 − ξ
2
1 |

{
ξ2

[
ξ′2 − ξ2(υξ1 − ξ2)

]
− ξ1(ξ′1 − υξ

2
1) + (ξ1 − ξ2)(ξ2

1 − υξ
′
1)
}
,

and (
Φ

V1
T

)
ss
× UV1

T =
1√
|ξ2

2 − ξ
2
1 |

{
ξ2(υξ′2 − ξ1ξ2) + ξ1(υξ′1 − ξ

2
1) + (ξ1 + ξ2)(υκ2 − ξ′1)

}
.
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Since
(
ΦT

V1

)
ss
×UT

V1
, 0 and

(
Φ

V1
T

)
ss
×UV1

T , 0, then s-parameter curves of TV1-imbricate-ruled surfaces
are not geodesic. Now 〈 (

ΦT
V1

)
ss
,UT

V1

〉
=
ξ′1ξ2 − ξ1ξ

′
2 + ξ1ξ

2
2√

|ξ2
2 − ξ

2
1 |

,

and 〈 (
Φ

V1
T

)
ss
,UV1

T

〉
=
υ(ξ′1ξ2 + ξ1ξ

′
2) − 2ξ2

1ξ2√
|ξ2

2 − ξ
2
1 |

.

From here, if ξ1 = 0 and ξ2 , 0 or ξ1 , 0 and ξ2 = 0, then
〈 (
ΦT

V1

)
ss
,UT

V1

〉
= 0 and

〈 (
Φ

V1
T

)
ss
,UV1

T

〉
= 0.

So the s-parameter curves of TV1-imbricate-ruled surfaces are asymptotic curves iff θ(s) = tanh−1
(κg
κn

)
or θ(s) = tanh−1

(κn
κg

)
.

Corollary 4.2. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then the υ-parameter curves of TV1-imbricate-ruled surfaces (4.1) are

i. geodesic,

ii. asymptotic curves.

Proof. Let ΦT
V1

(s, υ) defined by (4.1) due to RMDF (3.2) in E3
1 be an imbricate-ruled surface.

Since
(
ΦT

V1

)
υ
× UT

V1
= 0 and

(
Φ

V1
T

)
υυ
× UV1

T = 0, then the υ-parameter curves of TV1-imbricate-ruled

surfaces are geodesic. Also, since
〈 (
ΦT

V1

)
υυ
,UT

V1

〉
= 0 and

〈 (
Φ

V1
T

)
υυ
,UV1

T

〉
= 0, then the υ-parameter

curves of TV1-imbricate-ruled surfaces are asymptotic curves.

Corollary 4.3. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in
E3

1 via to RMDF (3.2). Then the s and υ-parameter curves of TV1-imbricate-ruled surfaces (4.1) are
principal curves if and only if ξ1 = 0.

Proof. Let ΦT
V1

(s, υ) defined by (4.1) due to RMDF (3.2) in E3
1 be an imbricate-ruled surface. From

equations (4.4), (4.5), (4.9) and (4.10), we have

FT
V1
= f T

V1
= FV1

T = f V1
T = 0,

for ξ1 = 0, thus, the proof is completed.

Definition 4.2. For a regular spacelike curve ϕ = ϕ(s) with timelike binormal vector and lying fully on
a timelike surface Ψ in E3

1. The TV2-imbricate-ruled surfaces via RMDF (3.2) of ϕ(s) are defined by

ΦT
V2

(s, υ) = T (s) + υV2(s),

Φ
V2
T (s, υ) = V2(s) + υT (s).

(4.12)

Theorem 4.2. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then TV2-imbricate-ruled surfaces (4.12) are developable and minimal surfaces
iff θ(s) = tanh−1

(κg
κn

)
or θ(s) = tanh−1

(κn
κg

)
.
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Proof. Using (3.2) and differentiating the first Eq (4.12) with regard to s and υ, we get(
ΦT

V2

)
s
= υξ2T (s) + ξ1V2(s) + ξ2V2(s),(

ΦT
V2

)
υ
= V2(s).

(4.13)

(
ΦT

V2

)
ss
= [υξ′2 + κ

2]T (s) + [ξ′1 + υξ1ξ2]V2(s) + [ξ′2 + υξ
2
2]V2(s),(

ΦT
V2

)
sυ
= ξ2T (s),

(
ΦT

V2

)
υυ
= 0.

(4.14)

The normal vector field of the surface ΦT
V2

(s, υ) is obtained as:

UT
V2
=
−ξ2T (s) + υξ2V1(s)

ξ2
1 + υ

2ξ2
2

.

With the aforementioned equation, we can obtain the first and second fundamental forms of ΦT
V2

’s
component parts as follows:

ET
V2
= υ2ξ2

2 + κ
2, FT

V2
= −ξ2, GT

V2
= −1. (4.15)

eT
V2
=
υξ2(ξ′1 + υξ1ξ2) − ξ1(υξ′2 + κ

2)√
ξ2

1 + υ
2ξ2

2

,

f T
V2
=

−ξ1ξ2√
ξ2

1 + υ
2ξ2

2

, gT
V2
= 0.

(4.16)

The Gaussian curvature KT
V2

and the mean curvature HT
V2

are determined using the data mentioned
above:

KT
V2
=

ξ2
1ξ

2
2(

ξ2
1 + υ

2ξ2
2
)2 ,

HT
V2
=
υξ2(ξ′1 + υξ1ξ2) − ξ1(υξ′2 + κ

2) − ξ1ξ2
2

2
(
ξ2

1 + υ
2ξ2

2
) 3

2

.

(4.17)

However, by applying the RMDF (3.2) and differentiating the second equation in (4.12) with regard to
s and υ, respectively, we obtain (

Φ
V2
T

)
s
= ξ2T (s) + υξ1V1(s) + υξ2V2(s),(

Φ
V2
T

)
υ
= T (s).

(4.18)

(
Φ

V2
T

)
ss
= [ξ′2 + υκ

2]T (s) + [υξ′1 + ξ1ξ2]V1(s) + [υξ′2 + ξ
2
2]V2(s),(

Φ
V2
T

)
sυ
= ξ1V1(s) + ξ2V2(s),

(
Φ

V2
T

)
υυ
= 0.

(4.19)

The normal vector field of the surface ΦV2
T (s, υ) is obtained as:

UV2
T (s, υ) =

ξ2V1(s) − ξ2V2(s)√
|ξ2

2 − ξ
2
1 |

.
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The ΦV2
T ’s component of the first and second fundamental forms are obtained as:

EV2
T = ξ

2
2 − υ

2κ2, FV2
T = ξ2, GV2

T = 1. (4.20)

eV2
T =

ξ2(υξ′1 + ξ1ξ2) − ξ1(υξ′2 + ξ
2
2)√

|ξ2
2 − ξ

2
1 |

,

f V2
T = 0, gV2

T = 0.

(4.21)

So, the Gaussian curvature and the mean curvature are given by

KV2
T = 0,

HV2
T =

ξ2(υξ′1 + ξ1ξ2) − ξ1(υξ′2 + ξ
2
2)

2υ2κ2
√
|ξ2

2 − ξ
2
1 |

. (4.22)

For ξ1 = 0 and ξ2 , 0 or ξ1 , 0 and ξ2 = 0 the proof is completed.

As a consequence of Theorem 4.2, we obtain the following results:

Corollary 4.4. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in
E3

1 via to RMDF (3.2). Then the s-parameter curves of TV2-imbricate-ruled surfaces (4.12) are not
geodesic and asymptotic curves.

Corollary 4.5. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then the υ-parameter curves of TV2-imbricate-ruled surfaces (4.12) are geodesic
and asymptotic curves.

Corollary 4.6. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in
E3

1 via to RMDF (3.2). Then the s and υ-parameter curves of TV2-imbricate-ruled surfaces (4.12) are

principal cuves iff θ(s) = tanh−1
(κn
κg

)
or θ(s) = tanh−1

(κg
κn

)
.

Remark 4.1. The proof of Corollaries 4.4–4.6 is similar to the proof of Corollaries 4.1–4.3.

Definition 4.3. For a regular spacelike curve ϕ = ϕ(s) with timelike binormal vector and lying fully on
a timelike surface Ψ in E3

1. The V1V2-imbricate-ruled surfaces via RMDF (3.2) of ϕ(s) are defined by

Φ
V1
V2

(s, υ) = V1(s) + υV2(s),

Φ
V2
V1

(s, υ) = V2(s) + υV1(s).
(4.23)

Theorem 4.3. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then V1V2-imbricate-ruled surfaces (4.23) are developable surfaces.

Proof. Using (3.2) and differentiating the first Eq (4.23) with regard to s and υ, we get(
Φ

V1
V2

)
s
= −(ξ1 − υξ2)T (s),(

Φ
V1
V2

)
υ
= V2(s).

(4.24)
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Φ

V1
V2

)
ss
= (υξ′2 − ξ

′
1)T (s) + ξ1(υξ2 − ξ1)V1(s) + ξ2(υξ2 − ξ1)V2(s),(

Φ
V1
V2

)
sυ
= ξ2T (s),

(
Φ

V1
V2

)
υυ
= 0.

(4.25)

The normal vector field of the surface ΦV1
V2

(s, υ) is obtained as:

UV1
V2

(s, υ) = −V1(s).

With the aforementioned equation, we can obtain the first and second fundamental forms of ΦV1
V2

’s
component parts as follows:

EV1
V2
= (ξ1 − υξ2)2, FV1

V2
= 0, GV1

V2
= −1. (4.26)

eV1
V2
= ξ1(ξ1 − υξ2), f V1

V2
= 0, gV1

V2
= 0. (4.27)

The Gaussian curvature KV1
V2

and the mean curvature HV1
V2

are determined using the data mentioned
above:

KV1
V2
= 0,

HV1
V2
=

ξ1
2(ξ1 − υξ2)

.
(4.28)

However, by applying the RMDF (3.2) and differentiating the second equation in (4.23) with regard to
s and υ, respectively, we obtain (

Φ
V2
V1

)
s
= (ξ2 − υξ1)T (s),(

Φ
V2
V1

)
υ
= V1(s).

(4.29)

(
Φ

V2
V1

)
ss
= (ξ′2 − υξ

′
1)T (s) + ξ1(ξ2 − υξ1)V1(s) + ξ2(ξ2 − υξ1)V1(s),(

Φ
V2
V1

)
sυ
= −ξ1T (s),

(
Φ

V2
V1

)
υυ
= 0.

(4.30)

The normal vector field of the surface ΦV2
V1

(s, υ) is obtained as:

UV2
V1

(s, υ) = V2(s).

The ΦV2
V1

’s component of the first and second fundamental forms are obtained as:

EV2
V1
= (ξ2 − υξ1)2, FV2

V1
= 0, GV2

V1
= 1. (4.31)

eV2
V1
= −(ξ2 − υξ1), f V2

V1
= 0, gV2

V1
= 0. (4.32)

So, the Gaussian curvature and the mean curvature are given by

KV2
V1
= 0,

HV2
V1
= −

1
2(ξ2 − υξ1)

.
(4.33)
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Corollary 4.7. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then, V1V2-imbricate-ruled surfaces (4.23) have constant mean curvature iff

i.
ξ1
ξ2
=

2υc
2c − 1

for some non-zero constant c ,
1
2

,

ii. ξ2 − υξ1 = c for some non-zero constant c.

Corollary 4.8. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in
E3

1 via to RMDF (3.2). Then υ-parameter curves of V1V2-imbricate-ruled surfaces (4.23) are geodesic
curves iff one of the following conditions holds

i. θ(s) = tanh−1
(κn
κg

)
and ξ1 is non-zero constant,

ii. θ(s) = tanh−1
(κg
κn

)
and ξ2 is non-zero constant.

Corollary 4.9. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then υ-parameter curves of V1V2-imbricate-ruled surfaces (4.23) are asymptotic
curves iff one of the following conditions holds

i. θ(s) = tanh−1
(κg
κn

)
and ξ2 = υξ1,

ii. θ(s) = tanh−1
(κn
κg

)
and ξ1 = υξ2.

Corollary 4.10. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in E3
1

via to RMDF (3.2). Then the υ-parameter curves of V1V2-imbricate-ruled surfaces (4.23) are geodesic
and asymptotic curves.

Corollary 4.11. Let ϕ = ϕ(s) be a unit speed spacelike curve lying fully on a timelike surface Ψ in
E3

1 via to RMDF (3.2). Then the s and υ-parameter curves of V1V2-imbricate-ruled surfaces (4.23) are
principal cuves.

5. Example

Take into account that a spacelike curve with timelike binomal vector in E3
1 parameterized ϕ(s) =

(cosh s, sinh s, 0) lying fully on a timelike ruled surface is given by the equation (see Figure 1)

Θ(s, υ) =
(
cosh u −

υ
√

2
sinh u, sinh u +

υ
√

2
cosh u,

υ
√

2

)
.
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Figure 1. The curve ϕ(s) on Θ(s, υ).

So, the Darboux frame of φ can be written as:

T (s) = (cosh s, sinh s, 0) ,
N(s) = (0, 0, 1) ,
P(s) = (cosh s, sinh s, 0) .

Then, we have
κn = 1, κg = τg = 0.

Then θ(s) = θ0 is a constant. Moreover,

V1(s) = (cosh s sinh θ0, sinh s sinh θ0, cosh θ0) ,
V2(s) = (cosh s cosh θ0, sinh s cosh θ0, sinh θ0) .

Consequently, the parametric of imbricate-ruled surfaces can be given as (see Figures 2–4):

Φ
V1
T = (sinh s + υ cosh s sinh θ0, cosh s + υ sinh s sinh θ0, υ cosh θ0) ,
ΦT

V1
= (cosh s sinh θ0 + υ sinh s, sinh s sinh θ0 + υ cosh s, cosh θ0) .

Φ
V2
T = (sinh s + υ cosh s cosh θ0, cosh s + υ sinh s cosh θ0, υ sinh θ0) ,
ΦT

V2
= (cosh s cosh θ0 + υ sinh s, sinh s cosh θ0 + υ cosh s, sinh θ0) .

Φ
V2
V1
= (cosh s sinh θ0 + υ cosh s cosh θ0, sinh s sinh θ0 + υ sinh s cosh θ0, cosh θ0 + υ sinh θ0) ,

Φ
V1
V2
= (cosh s cosh θ0 + υ cosh s sinh θ0, sinh s cosh θ0 + υ sinh s sinh θ0, sinh θ0 + υ cosh θ0) .
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(a) (b) (c)

Figure 2. In (a), the ruled surfaces ΦV1
T ; in (b), the ruled surfaces ΦT

V1
; in (c), TV1-imbricate-

ruled surfaces.

(a) (b) (c)

Figure 3. In (a), the ruled surfaces ΦV2
T ; in (b), the ruled surfaces ΦT

V2
; in (c), TV2-imbricate-

ruled surfaces.

(a) (b) (c)

Figure 4. In (a), the ruled surfaces ΦV1
V2

; in (b), the ruled surfaces ΦV2
V2

; in (c), V1V2-imbricate-
ruled surfaces.
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6. Conclusions

Recently, numerous researchers have used the Bishop frame and Darboux frame to investigate
curves and surfaces, just as they did with the Frenet frame. Recently, the idea of a B-Darboux frame
was demonstrated; further investigation may be conducted in the future. The RMDF that we develop
in this paper travels along a spacelike curve that fully encircles a timelike surface in E3

1. We also
demonstrate how to use RMDF on imbricate-ruled surfaces.
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