If both the arc length and the intrinsic curvature of a curve or surface are preserved, then the flow of the curve or surface is said to be inextensible. The absence of motion-induced strain energy is the physical characteristic of inextensible curve and surface flows. In this paper, we study inextensible tangential, normal and binormal ruled surfaces generated by a curve with constant torsion, which is also called a Salkowski curve. We investigate whether or not these surfaces are minimal or can be developed. In addition, we prove some theorems which are related to inextensible ruled surfaces within three-dimensional Euclidean space.
Citation: Nural Yüksel, Burçin Saltık. On inextensible ruled surfaces generated via a curve derived from a curve with constant torsion[J]. AIMS Mathematics, 2023, 8(5): 11312-11324. doi: 10.3934/math.2023573
If both the arc length and the intrinsic curvature of a curve or surface are preserved, then the flow of the curve or surface is said to be inextensible. The absence of motion-induced strain energy is the physical characteristic of inextensible curve and surface flows. In this paper, we study inextensible tangential, normal and binormal ruled surfaces generated by a curve with constant torsion, which is also called a Salkowski curve. We investigate whether or not these surfaces are minimal or can be developed. In addition, we prove some theorems which are related to inextensible ruled surfaces within three-dimensional Euclidean space.
[1] | G. Chirikjian, J. Burdick, A modal approach to hyperredundant manipulator kinematics, IEEE Transactions on Robotics and Automation, 10 (1994), 343–354. http://dx.doi.org/10.1109/70.294209 doi: 10.1109/70.294209 |
[2] | M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J. Comput. Vision, 1 (1988), 321–331. http://dx.doi.org/10.1007/BF00133570 doi: 10.1007/BF00133570 |
[3] | H. Lu, J. Todhunter, T. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP: Image Understanding, 58 (1993), 265–285. http://dx.doi.org/10.1006/ciun.1993.1042 doi: 10.1006/ciun.1993.1042 |
[4] | M. Gage, R. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69–96. http://dx.doi.org/10.4310/jdg/1214439902 doi: 10.4310/jdg/1214439902 |
[5] | M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285–314. |
[6] | M. Gage, On an area-preserving evolution equation for plane curves, Contemp. Math., 51 (1986), 51–62. |
[7] | D. Kwon, F. Park, Evolution of inelastic plane curves, Appl. Math. Lett., 12 (1999), 115–119. http://dx.doi.org/10.1016/S0893-9659(99)00088-9 doi: 10.1016/S0893-9659(99)00088-9 |
[8] | D. Kwon, F. Park, D. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18 (2005), 1156–1162. http://dx.doi.org/10.1016/j.aml.2005.02.004 doi: 10.1016/j.aml.2005.02.004 |
[9] | N. Yüksel, The ruled surfaces according to Bishop frame in Minkowski 3-space, Abstr. Appl. Anal., 2013 (2013), 810640. http://dx.doi.org/10.1155/2013/810640 doi: 10.1155/2013/810640 |
[10] | N. Yüksel, On dual surfaces in Galilean 3-space, AIMS Mathematics, 8 (2023), 4830–4842. http://dx.doi.org/10.3934/math.2023240 doi: 10.3934/math.2023240 |
[11] | R. Abdel-Baky, M. Saad, Some characterizations of dual curves in dual 3-space $D ^3$, AIMS Mathematics, 6 (2021), 3339–3351. http://dx.doi.org/10.3934/math.2021200 doi: 10.3934/math.2021200 |
[12] | Y. Li, A. Abdel-Salam, M. Khalifa Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. http://dx.doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123 |
[13] | Y. Li, K. Eren, K. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. http://dx.doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115 |
[14] | Y. Li, M. Aldossary, R. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry, 15 (2023), 173. http://dx.doi.org/10.3390/sym15010173 doi: 10.3390/sym15010173 |
[15] | H. Abdel-Aziza, H. Serryb, F. El-Adawyb, A. Khalila, On admissible curves and their evolution equations in pseudo-Galilean space, J. Math. Comput. Sci., 25 (2022), 370–380. http://dx.doi.org/10.22436/jmcs.025.04.07 doi: 10.22436/jmcs.025.04.07 |
[16] | A. Ahmad, H. Abdel Aziz, A. Sorour, Ruled surfaces generated by some special curves in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 21 (2013), 285–294. http://dx.doi.org/10.1016/j.joems.2013.02.004 doi: 10.1016/j.joems.2013.02.004 |
[17] | R. Hussien, T. Youssef, Evolution of special ruled surfaces via the evolution of their directrices in Euclidean 3-space $E^3$, Appl. Math. Inf. Sci., 10 (2016), 1949–1956. http://dx.doi.org/10.18576/amis/100536 doi: 10.18576/amis/100536 |
[18] | K. Eren, H. Kosal, Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics, 5 (2020), 2027–2039. http://dx.doi.org/10.3934/math.2020134 doi: 10.3934/math.2020134 |
[19] | A. Kelleci, K. Eren, On evolution of some associated type ruled surfaces, Mathematical Sciences and Applications E-Notes, 8 (2020), 178–186. http://dx.doi.org/10.36753/mathenot.750639 doi: 10.36753/mathenot.750639 |
[20] | T. Körpınar, S. Baş, E. Turhan, V. Asil, On inextensible flows of dural tangent developable surfaces in the dual space $D^3$, Mathematica Aeterna, 2 (2012), 325–333. |
[21] | Z. Yüzbası, D. Yoon, Inextensible flows of curves on lightlike surfaces, Mathematics, 6 (2018), 224. http://dx.doi.org/10.3390/math6110224 doi: 10.3390/math6110224 |
[22] | N. Yüksel, B. Saltık, M. Karacan, The Characterizations of the curves generated by a curve with constant torsion, Konuralp Journal of Mathematics, 11 (2023), 1–7. |
[23] | E. Kruppa, Analytische und constructive differential geometrie (German), Wien: Springer, 1957. |
[24] | B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983. |
[25] | S. Nurkan, İ. Güven, M. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 89 (2019), 155–161. http://dx.doi.org/10.1007/s40010-017-0425-y doi: 10.1007/s40010-017-0425-y |
[26] | Y. Li, Z. Chen, S. Nazra, R. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. http://dx.doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277 |
[27] | Y. Li, S. Nazra, R. Abdel-Baky, Singularity properties of timelike sweeping surface in Minkowski 3-space, Symmetry, 14 (2022), 1996. http://dx.doi.org/10.3390/sym14101996 doi: 10.3390/sym14101996 |
[28] | Y. Li, F. Mofarreh, R. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. http://dx.doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914 |
[29] | Y. Li, M. Erdoğdu, A. Yavuz, Differential geometric approach of Betchov-Da Rios soliton equation, Hacet. J. Math. Stat., 52 (2023), 114–125. http://dx.doi.org/10.15672/hujms.1052831 doi: 10.15672/hujms.1052831 |
[30] | Q. Zhao, L. Yang, Y. Wang, Geometry of developable surfaces of Frenet type framed base curves from the singularity theory viewpoint, Symmetry, 14 (2022), 975. http://dx.doi.org/10.3390/sym14050975 doi: 10.3390/sym14050975 |