Research article Special Issues

On inextensible ruled surfaces generated via a curve derived from a curve with constant torsion

  • Received: 20 December 2022 Revised: 28 February 2023 Accepted: 01 March 2023 Published: 13 March 2023
  • MSC : 53A05

  • If both the arc length and the intrinsic curvature of a curve or surface are preserved, then the flow of the curve or surface is said to be inextensible. The absence of motion-induced strain energy is the physical characteristic of inextensible curve and surface flows. In this paper, we study inextensible tangential, normal and binormal ruled surfaces generated by a curve with constant torsion, which is also called a Salkowski curve. We investigate whether or not these surfaces are minimal or can be developed. In addition, we prove some theorems which are related to inextensible ruled surfaces within three-dimensional Euclidean space.

    Citation: Nural Yüksel, Burçin Saltık. On inextensible ruled surfaces generated via a curve derived from a curve with constant torsion[J]. AIMS Mathematics, 2023, 8(5): 11312-11324. doi: 10.3934/math.2023573

    Related Papers:

  • If both the arc length and the intrinsic curvature of a curve or surface are preserved, then the flow of the curve or surface is said to be inextensible. The absence of motion-induced strain energy is the physical characteristic of inextensible curve and surface flows. In this paper, we study inextensible tangential, normal and binormal ruled surfaces generated by a curve with constant torsion, which is also called a Salkowski curve. We investigate whether or not these surfaces are minimal or can be developed. In addition, we prove some theorems which are related to inextensible ruled surfaces within three-dimensional Euclidean space.



    加载中


    [1] G. Chirikjian, J. Burdick, A modal approach to hyperredundant manipulator kinematics, IEEE Transactions on Robotics and Automation, 10 (1994), 343–354. http://dx.doi.org/10.1109/70.294209 doi: 10.1109/70.294209
    [2] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J. Comput. Vision, 1 (1988), 321–331. http://dx.doi.org/10.1007/BF00133570 doi: 10.1007/BF00133570
    [3] H. Lu, J. Todhunter, T. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP: Image Understanding, 58 (1993), 265–285. http://dx.doi.org/10.1006/ciun.1993.1042 doi: 10.1006/ciun.1993.1042
    [4] M. Gage, R. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69–96. http://dx.doi.org/10.4310/jdg/1214439902 doi: 10.4310/jdg/1214439902
    [5] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285–314.
    [6] M. Gage, On an area-preserving evolution equation for plane curves, Contemp. Math., 51 (1986), 51–62.
    [7] D. Kwon, F. Park, Evolution of inelastic plane curves, Appl. Math. Lett., 12 (1999), 115–119. http://dx.doi.org/10.1016/S0893-9659(99)00088-9 doi: 10.1016/S0893-9659(99)00088-9
    [8] D. Kwon, F. Park, D. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18 (2005), 1156–1162. http://dx.doi.org/10.1016/j.aml.2005.02.004 doi: 10.1016/j.aml.2005.02.004
    [9] N. Yüksel, The ruled surfaces according to Bishop frame in Minkowski 3-space, Abstr. Appl. Anal., 2013 (2013), 810640. http://dx.doi.org/10.1155/2013/810640 doi: 10.1155/2013/810640
    [10] N. Yüksel, On dual surfaces in Galilean 3-space, AIMS Mathematics, 8 (2023), 4830–4842. http://dx.doi.org/10.3934/math.2023240 doi: 10.3934/math.2023240
    [11] R. Abdel-Baky, M. Saad, Some characterizations of dual curves in dual 3-space $D ^3$, AIMS Mathematics, 6 (2021), 3339–3351. http://dx.doi.org/10.3934/math.2021200 doi: 10.3934/math.2021200
    [12] Y. Li, A. Abdel-Salam, M. Khalifa Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. http://dx.doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123
    [13] Y. Li, K. Eren, K. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. http://dx.doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115
    [14] Y. Li, M. Aldossary, R. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry, 15 (2023), 173. http://dx.doi.org/10.3390/sym15010173 doi: 10.3390/sym15010173
    [15] H. Abdel-Aziza, H. Serryb, F. El-Adawyb, A. Khalila, On admissible curves and their evolution equations in pseudo-Galilean space, J. Math. Comput. Sci., 25 (2022), 370–380. http://dx.doi.org/10.22436/jmcs.025.04.07 doi: 10.22436/jmcs.025.04.07
    [16] A. Ahmad, H. Abdel Aziz, A. Sorour, Ruled surfaces generated by some special curves in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 21 (2013), 285–294. http://dx.doi.org/10.1016/j.joems.2013.02.004 doi: 10.1016/j.joems.2013.02.004
    [17] R. Hussien, T. Youssef, Evolution of special ruled surfaces via the evolution of their directrices in Euclidean 3-space $E^3$, Appl. Math. Inf. Sci., 10 (2016), 1949–1956. http://dx.doi.org/10.18576/amis/100536 doi: 10.18576/amis/100536
    [18] K. Eren, H. Kosal, Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Mathematics, 5 (2020), 2027–2039. http://dx.doi.org/10.3934/math.2020134 doi: 10.3934/math.2020134
    [19] A. Kelleci, K. Eren, On evolution of some associated type ruled surfaces, Mathematical Sciences and Applications E-Notes, 8 (2020), 178–186. http://dx.doi.org/10.36753/mathenot.750639 doi: 10.36753/mathenot.750639
    [20] T. Körpınar, S. Baş, E. Turhan, V. Asil, On inextensible flows of dural tangent developable surfaces in the dual space $D^3$, Mathematica Aeterna, 2 (2012), 325–333.
    [21] Z. Yüzbası, D. Yoon, Inextensible flows of curves on lightlike surfaces, Mathematics, 6 (2018), 224. http://dx.doi.org/10.3390/math6110224 doi: 10.3390/math6110224
    [22] N. Yüksel, B. Saltık, M. Karacan, The Characterizations of the curves generated by a curve with constant torsion, Konuralp Journal of Mathematics, 11 (2023), 1–7.
    [23] E. Kruppa, Analytische und constructive differential geometrie (German), Wien: Springer, 1957.
    [24] B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983.
    [25] S. Nurkan, İ. Güven, M. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 89 (2019), 155–161. http://dx.doi.org/10.1007/s40010-017-0425-y doi: 10.1007/s40010-017-0425-y
    [26] Y. Li, Z. Chen, S. Nazra, R. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. http://dx.doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277
    [27] Y. Li, S. Nazra, R. Abdel-Baky, Singularity properties of timelike sweeping surface in Minkowski 3-space, Symmetry, 14 (2022), 1996. http://dx.doi.org/10.3390/sym14101996 doi: 10.3390/sym14101996
    [28] Y. Li, F. Mofarreh, R. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. http://dx.doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914
    [29] Y. Li, M. Erdoğdu, A. Yavuz, Differential geometric approach of Betchov-Da Rios soliton equation, Hacet. J. Math. Stat., 52 (2023), 114–125. http://dx.doi.org/10.15672/hujms.1052831 doi: 10.15672/hujms.1052831
    [30] Q. Zhao, L. Yang, Y. Wang, Geometry of developable surfaces of Frenet type framed base curves from the singularity theory viewpoint, Symmetry, 14 (2022), 975. http://dx.doi.org/10.3390/sym14050975 doi: 10.3390/sym14050975
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1342) PDF downloads(126) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog