In this study, the partner-ruled surfaces in Minkowski 3-space, which are defined according to the Frenet vectors of non-null space curves, are introduced with extra conditions that guarantee the existence of definite surface normals. First, the requirements of each pair of partner-ruled surfaces to be simultaneously developable and minimal (or maximal for spacelike surfaces) are investigated. The surfaces also simultaneously characterize the asymptotic, geodesic and curvature lines of the parameter curves of these surfaces. Finally, the study provides examples of timelike and spacelike partner-ruled surfaces and includes their graphs.
Citation: Yanlin Li, Kemal Eren, Soley Ersoy. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space[J]. AIMS Mathematics, 2023, 8(9): 22256-22273. doi: 10.3934/math.20231135
In this study, the partner-ruled surfaces in Minkowski 3-space, which are defined according to the Frenet vectors of non-null space curves, are introduced with extra conditions that guarantee the existence of definite surface normals. First, the requirements of each pair of partner-ruled surfaces to be simultaneously developable and minimal (or maximal for spacelike surfaces) are investigated. The surfaces also simultaneously characterize the asymptotic, geodesic and curvature lines of the parameter curves of these surfaces. Finally, the study provides examples of timelike and spacelike partner-ruled surfaces and includes their graphs.
[1] | H. Guggenheimer, Differential geometry, New York: McGraw-Hill, 1963. |
[2] | J. Hoschek, Liniengeometrie, Zürich: Bibliographisches Institute, 1971. |
[3] | J. Hano, K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tohoku Math. J., 36 (1984), 427–437. http://dx.doi.org/10.2748/tmj/1178228808 doi: 10.2748/tmj/1178228808 |
[4] | R. Lopez, Surfaces of constant Gauss curvature in Lorentz-Minkowski space, Rocky Mountain J. Math., 33 (2003), 971–993. http://dx.doi.org/10.1216/rmjm/1181069938 doi: 10.1216/rmjm/1181069938 |
[5] | R. Lopez, Timelike surfaces with constant mean curvature in Lorentz three-space, Tohoku Math. J., 52 (2000), 515–532. http://dx.doi.org/10.2748/tmj/1178207753 doi: 10.2748/tmj/1178207753 |
[6] | W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, Ph. D Thesis, Katholieke Universiteit Leuven, 2005. |
[7] | K. Akutagawa, S. Nishikawa, The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space, Tohoku Math. J., 42 (1990), 67–82. http://dx.doi.org/10.2748/tmj/1178227694 doi: 10.2748/tmj/1178227694 |
[8] | A. Turgut, H. Hacısaliho${\rm{\tilde g}}$lu, Timelike ruled surfaces in the Minkowski 3-space-Ⅱ, Turk. J. Math., 22 (1998), 33–46. |
[9] | A. Turgut, H. Hacısaliho${\rm{\tilde g}}$lu, Spacelike ruled surfaces in the Minkowski 3-space, Commun. Fac. Sci. Univ., 46 (1997), 83–91. http://dx.doi.org/10.1501/Commua1_0000000427 doi: 10.1501/Commua1_0000000427 |
[10] | E. Özyılmaz, Y. Yaylı, On the closed motions and closed space-like ruled surfaces, Commun. Fac. Sci. Univ., 49 (2000), 49–58. http://dx.doi.org/10.1501/Commua1_0000000378 doi: 10.1501/Commua1_0000000378 |
[11] | Y. Yaylı, On the motion of the Frenet vectors and spacelike ruled surfaces in the Minkowski 3-Space, Math. Comput. Appl., 5 (2000), 49–55. http://dx.doi.org/10.3390/mca5010049 doi: 10.3390/mca5010049 |
[12] | I. Van de Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, In: Geometry and topology of submanifolds, II, Singapore: Word Scientific Publishing, 1999,344–369. |
[13] | Y. Li, D. Pei, Evolutes of dual spherical curves for ruled surfaces, Math. Method. Appl. Sci., 39 (2016), 3005–3015. http://dx.doi.org/10.1002/mma.3748 doi: 10.1002/mma.3748 |
[14] | S. Şenyurt, S. Gür, Spacelike surface geometry, Int. J. Geom. Methods M., 14 (2017), 1750118. http://dx.doi.org/10.1142/S0219887817501183 doi: 10.1142/S0219887817501183 |
[15] | S. Gür Mazlum, Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space, Filomat, 37 (2023), 5735–5749. http://dx.doi.org/10.2298/FIL2317735G doi: 10.2298/FIL2317735G |
[16] | Y. Li, K. Eren, K. Ayvacı, S. Ersoy, Simultaneous characterizations of partner-ruled surfaces using Flc frame, AIMS Mathematics, 7 (2022), 20213–20229. http://dx.doi.org/10.3934/math.20221106 doi: 10.3934/math.20221106 |
[17] | O. Soukaina, Simultaneous developability of partner-ruled surfaces according to Darboux frame in ${E^3}$, Abstr. Appl. Anal., 2021 (2021), 3151501. http://dx.doi.org/10.1155/2021/3151501 doi: 10.1155/2021/3151501 |
[18] | J. Choi, Y. Kim, A. Ali, Some associated curves of Frenet non-lightlike curves in $E_1^3$, J. Math. Anal. Appl., 394 (2012), 712–723. http://dx.doi.org/10.1016/j.jmaa.2012.04.063 doi: 10.1016/j.jmaa.2012.04.063 |
[19] | R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014), 44–107. http://dx.doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497 |
[20] | Y. Li, M. Erdogdu, A. Yavuz, Differential geometric approach of Betchov-Da Rios soliton equation, Hacet. J. Math. Stat., 52 (2023), 114–125. http://dx.doi.org/10.15672/hujms.1052831 doi: 10.15672/hujms.1052831 |
[21] | Y. Li, K. Eren, K. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. http://dx.doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115 |
[22] | Y. Li, Z. Chen, S. Nazra, R. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. http://dx.doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277 |
[23] | Y. Li, M. Aldossary, R. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry, 15 (2023), 173. http://dx.doi.org/10.3390/sym15010173 doi: 10.3390/sym15010173 |
[24] | Y. Li, A. Abdel-Salam, M. Khalifa Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. http://dx.doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123 |
[25] | Y. Li, O. Tuncer, On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space, Math. Method. Appl. Sci., 46 (2023), 11157–11171. http://dx.doi.org/10.1002/mma.9173 doi: 10.1002/mma.9173 |
[26] | Y. Li, A. Abolarinwa, A. Alkhaldi, A. Ali, Some inequalities of Hardy type related to Witten-Laplace operator on smooth metric measure spaces, Mathematics, 10 (2022), 4580. http://dx.doi.org/10.3390/math10234580 doi: 10.3390/math10234580 |
[27] | Y. Li, A. Alkhaldi, A. Ali, R. Abdel-Baky, M. Khalifa Saad, Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space, AIMS Mathematics, 8 (2023), 13875–13888. http://dx.doi.org/10.3934/math.2023709 doi: 10.3934/math.2023709 |
[28] | Y. Li, D. Ganguly, Kenmotsu metric as conformal $\eta$-Ricci soliton, Mediterr. J. Math., 20 (2023), 193. http://dx.doi.org/10.1007/s00009-023-02396-0 doi: 10.1007/s00009-023-02396-0 |
[29] | Y. Li, S. Srivastava, F. Mofarreh, A. Kumar, A. Ali, Ricci soliton of CR-warped product manifolds and their classifications, Symmetry, 15 (2023), 976. http://dx.doi.org/10.3390/sym15050976 doi: 10.3390/sym15050976 |
[30] | Y. Li, P. Laurian-Ioan, L. Alqahtani, A. Alkhaldi, A. Ali, Zermelo's navigation problem for some special surfaces of rotation, AIMS Mathematics, 8 (2023), 16278–16290. http://dx.doi.org/10.3934/math.2023833 doi: 10.3934/math.2023833 |
[31] | Y. Li, A. Çalişkan, Quaternionic shape operator and rotation matrix on ruled surfaces, Axioms, 12 (2023), 486. http://dx.doi.org/10.3390/axioms12050486 doi: 10.3390/axioms12050486 |
[32] | Y. Li, A. Gezer, E. Karakaş, Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection, AIMS Mathematics, 8 (2023), 17335–17353. http://dx.doi.org/10.3934/math.2023886 doi: 10.3934/math.2023886 |
[33] | Y. Li, S. Bhattacharyya, S. Azami, A. Saha, S. Hui, Harnack estimation for nonlinear, weighted, heat-type equation along geometric flow and applications, Mathematics, 11 (2023), 2516. http://dx.doi.org/10.3390/math11112516 doi: 10.3390/math11112516 |
[34] | Y. Li, H. Kumara, M. Siddesha, D. Naik, Characterization of Ricci almost soliton on Lorentzian manifolds, Symmetry, 15 (2023), 1175. http://dx.doi.org/10.3390/sym15061175 doi: 10.3390/sym15061175 |
[35] | Y. Li, S. Gür Mazlum, S. Şenyurt, The Darboux trihedrons of timelike surfaces in the Lorentzian 3-space, Int. J. Geom. Methods M., 20 (2023), 2350030. http://dx.doi.org/10.1142/S0219887823500305 doi: 10.1142/S0219887823500305 |
[36] | S. Gür Mazlum, S. Şenyurt, L. Grilli, The invariants of dual parallel equidistant ruled surfaces, Symmetry, 15 (2023), 206. http://dx.doi.org/10.3390/sym15010206 doi: 10.3390/sym15010206 |
[37] | S. Gür Mazlum, S. Şenyurt, L. Grilli, The dual expression of parallel equidistant ruled surfaces in Euclidean 3-space, Symmetry, 14 (2022), 1062. http://dx.doi.org/10.3390/sym14051062 doi: 10.3390/sym14051062 |