Research article

The non-linear Schrödinger equation associated with the soliton surfaces in Minkowski 3-space

  • Received: 25 May 2022 Revised: 29 June 2022 Accepted: 07 July 2022 Published: 04 August 2022
  • MSC : 35Q51, 51B20, 53A35, 76B47

  • The quasi frame is more efficient than the Frenet frame in investigating surfaces, and it is regarded a generalization frame of both the Frenet and Bishop frames. The geometry of quasi-Hasimoto surfaces in Minkowski 3-space $ \mathbb{E}_1^3 $ is investigated in this paper. For the three situations of non-lightlike curves, the geometric features of the quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ are examined and the Gaussian and mean curvatures for each case are determined. The quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ must satisfy a necessary and sufficient condition to be developable surfaces. As a result, the parameter curves of quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ is described. Thus, the $ s $-parameter and $ t $-parameter curves of quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ are said to be geodesics, asymptotic, and curvature lines under necessary and sufficient circumstances are proved. Finally, quasi curves and associated quasi-Hasimoto surface correspondences are discussed.

    Citation: Ayman Elsharkawy, Clemente Cesarano, Abdelrhman Tawfiq, Abdul Aziz Ismail. The non-linear Schrödinger equation associated with the soliton surfaces in Minkowski 3-space[J]. AIMS Mathematics, 2022, 7(10): 17879-17893. doi: 10.3934/math.2022985

    Related Papers:

  • The quasi frame is more efficient than the Frenet frame in investigating surfaces, and it is regarded a generalization frame of both the Frenet and Bishop frames. The geometry of quasi-Hasimoto surfaces in Minkowski 3-space $ \mathbb{E}_1^3 $ is investigated in this paper. For the three situations of non-lightlike curves, the geometric features of the quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ are examined and the Gaussian and mean curvatures for each case are determined. The quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ must satisfy a necessary and sufficient condition to be developable surfaces. As a result, the parameter curves of quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ is described. Thus, the $ s $-parameter and $ t $-parameter curves of quasi-Hasimoto surfaces in $ \mathbb{E}_1^3 $ are said to be geodesics, asymptotic, and curvature lines under necessary and sufficient circumstances are proved. Finally, quasi curves and associated quasi-Hasimoto surface correspondences are discussed.



    加载中


    [1] N. H. Abdel-All, R. A. Hussien, T. Youssef, Hasimoto surfaces, Life Sci. J., 9 (2012), 556–560.
    [2] Q. Ding, J. Inoguchi, Schrödinger flows, binormal motion for curves and the second AKNS-hierarchies, Chaos Soliton. Fract., 21 (2004), 669–677. https://doi.org/10.1016/j.chaos.2003.12.092 doi: 10.1016/j.chaos.2003.12.092
    [3] M. Elzawy, Hasimoto surfaces in Galilean space $G_{3} $, J. Egypt. Math. Soc., 29 (2021), 5. https://doi.org/10.1186/s42787-021-00113-y doi: 10.1186/s42787-021-00113-y
    [4] M. Erdogdu, M. Özdemir, Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom., 17 (2014), 169–181. https://doi.org/10.1007/s11040-014-9148-3 doi: 10.1007/s11040-014-9148-3
    [5] N. Gürbüz, Intrinstic geometry of NLS equation and heat system in 3-dimensional Minkowski space, Adv. Studies Theor. Phys., 4 (2010), 557–564.
    [6] N. Gürbüz, The motion of timelike surfaces in timelike geodesic coordinates, Int. J. Math. Anal., 4 (2010), 349–356.
    [7] E. Hamouda, O. Moaaz, C. Cesarano, S. Askar, A. Elsharkawy, Geometry of solutions of the quasi-vortex filament equation in Euclidean 3-space $\mathbb{E}^3$, Mathematics, 10 (2022), 891. https://doi.org/10.3390/math10060891 doi: 10.3390/math10060891
    [8] H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech., 51 (1972), 477–485. https://doi.org/10.1017/S0022112072002307 doi: 10.1017/S0022112072002307
    [9] K. Hosseini, M. Mirzazadeh, D. Baleanu, S. Salahshour, L. Akinyemi, Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect, Opt. Quant. Electron., 54 (2022), 177. https://doi.org/10.1007/s11082-022-03522-0 doi: 10.1007/s11082-022-03522-0
    [10] K. Hosseini, S. Salahshour, M. Mirzazadeh, Bright and dark solitons of a weakly nonlocal Schrödinger equation involving the parabolic law nonlinearity, Optik, 227 (2021), 166042. https://doi.org/10.1016/j.ijleo.2020.166042 doi: 10.1016/j.ijleo.2020.166042
    [11] J. Inoguchi, Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J. Math., 21 (1998), 141–152. https://doi.org/10.3836/tjm/1270041992 doi: 10.3836/tjm/1270041992
    [12] A. Kelleci, M. Bektas, M. Ergüt, The Hasimoto surface according to bishop frame, Adıyaman Univ. J. Sci., 9 (2019), 13–22.
    [13] E. Kemal, A. K. Akbay, On the harmonic evolute surfaces of hasimoto surfaces, Adi. Uni. J. Sci. 11 (2019), 87–100. https://doi.org/10.37094/adyujsci.820698 doi: 10.37094/adyujsci.820698
    [14] T. Körpınar, R. C. Demirkol, Z. Körpınar, Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space, Optik, 238 (2021), 166403. https://doi.org/10.1016/j.ijleo.2021.166403 doi: 10.1016/j.ijleo.2021.166403
    [15] M. Özdemir, A. A. Ergin, Rotations with unit timelike quaternions in Minkowski 3-space, J. Geom. Phys., 56 (2006), 322–336. https://doi.org/10.1016/j.geomphys.2005.02.004 doi: 10.1016/j.geomphys.2005.02.004
    [16] C. Rogers, W. K. Schief, Bäcklund and Darboux transformations: Geometry and modern applications in soliton theory, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511606359
    [17] C. Rogers, W. K. Schief, Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation, Stud. Appl. Math., 101 (1998), 267–287. https://doi.org/10.1111/1467-9590.00093 doi: 10.1111/1467-9590.00093
    [18] W. K. Schief, C. Rogers, Binormal motion of curves of constant curvature and torsion, Math. Phys. Eng. Sci., 455 (1988), 3163–3188. https://doi.org/10.1098/rspa.1999.0445 doi: 10.1098/rspa.1999.0445
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1478) PDF downloads(108) Cited by(3)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog