The current study uses an essential and integrated form of Laplace-type integral transform coupled with the Adomian's approach to study nonlinear evolution equations endowed with non-integer derivatives. More so, of particular interest here is to demonstrate the application of this transform to a wider class of nonlinear problems. Three test models have been examined by the presented method, and their closed-form solutions have been reported iteratively. Lastly, the variational effect of the non-integer order derivatives on the evolution of these models has been studied via the two and three-dimensional depictions.
Citation: Rahmatullah Ibrahim Nuruddeen, Yasir Akbar, Hwajoon Kim. On the application of $ G_\alpha $ integral transform to nonlinear dynamical models with non-integer order derivatives[J]. AIMS Mathematics, 2022, 7(10): 17859-17878. doi: 10.3934/math.2022984
The current study uses an essential and integrated form of Laplace-type integral transform coupled with the Adomian's approach to study nonlinear evolution equations endowed with non-integer derivatives. More so, of particular interest here is to demonstrate the application of this transform to a wider class of nonlinear problems. Three test models have been examined by the presented method, and their closed-form solutions have been reported iteratively. Lastly, the variational effect of the non-integer order derivatives on the evolution of these models has been studied via the two and three-dimensional depictions.
[1] | L. Debnath, D. Bhatta, Integral transforms and their applications, 2 Eds., New York: CRC Press, 2006. https://doi.org/10.1201/9781420010916 |
[2] | G. K. Watugula, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24 (1993), 35–43. https://doi.org/10.1080/0020739930240105 doi: 10.1080/0020739930240105 |
[3] | Z. H. Khan, W. A. Khan, Natural transform-properties and applications, NUST J. Eng. Sci., 1 (2008), 127–133. https://doi.org/10.24949/njes.v1i1.69 doi: 10.24949/njes.v1i1.69 |
[4] | T. M. Elzaki, The new integral transform "Elzaki transform", Global Journal of Pure and Applied Mathematics, 7 (2011), 57–64. |
[5] | K. S. Aboodh, The new integral transform "Aboodh transform", Global Journal of Pure and Applied Mathematics, 9 (2013), 35–43. |
[6] | H. M. Srivastava, M. Luo, R. K. Raina, A new integral transform and its applications, Acta Math. Sci., 35 (2015), 1386–1400. https://doi.org/10.1016/S0252-9602(15)30061-8 doi: 10.1016/S0252-9602(15)30061-8 |
[7] | Z. U. A. Zafar, ZZ transform method, Int. J. Adv. Eng. Glob. Technol., 4 (2016), 1605–1611. |
[8] | M. A. Ramadan, K. R. Raslan, T. S. El-Danaf, A. R. Hadhoud, A new general integral transform: some properties and remarks, J. Math. Comput. Sci., 6 (2016), 103–109. |
[9] | H. Kim, The intrinsic structure and properties of Laplace-typed integral transforms, Math. Probl. Eng., 2017 (2017), 1762729. https://doi.org/10.1155/2017/1762729 doi: 10.1155/2017/1762729 |
[10] | S. Supaknaree, K. Nonlapon, H. Kim, Further properties of Laplace-type integral transform, Dyn. Sys. Appl., 28 (2019), 195–215. https://doi.org/10.12732/dsa.v28i1.12 doi: 10.12732/dsa.v28i1.12 |
[11] | H. Kim, S. Sattaso, K. Kaewnimit, K. Nonlaopon, An application of generalized Laplace transform in PDEs, Advances in Dynamical Systems and Applications, 14 (2019), 257–265. https://doi.org/10.37622/ADSA/14.2.2019.257-265 doi: 10.37622/ADSA/14.2.2019.257-265 |
[12] | G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9 |
[13] | J. Biazar, H. Aminikhah, Exact and numerical solutions for non-linear Burger's equation by VIM, Math. Comput. Model., 49 (2019), 1394–1400. https://doi.org/10.1016/j.mcm.2008.12.006 doi: 10.1016/j.mcm.2008.12.006 |
[14] | R. I. Nuruddeen, B. D. Garba, Analytical technique for (2+1) fractional diffusion equation with nonlocal boundary conditions, Open J. Math. Sci., 2 (2018), 287–300. https://doi.org/10.30538/oms2018.0035 doi: 10.30538/oms2018.0035 |
[15] | A. M. O. Anwar, F. Jarad, D. Baleanu, F. Ayaz, Fractional Caputo heat equation within the double Laplace transform, Rom. J. Phys., 58 (2013), 15–22. |
[16] | R. I. Nuruddeen, K. S. Aboodh, Analytical solution for time-fractional diffusion equation by Aboodh decomposition method, Int. J. Math. Appl., 5 (2017), 115–122. |
[17] | R. I. Nuruddeen, K. S. Aboodh, K. K. Ali, Constructing logistic function-type solitary wave solutions to Burgers and Sharma-Tasso-Olver equations, Int. J. Appl. Comput. Math., 5 (2019), 5. https://doi.org/10.1007/s40819-018-0587-6 doi: 10.1007/s40819-018-0587-6 |
[18] | K. K. Ali, R. I. Nuruddeen, A. Yildirim, On the new extensions to the Benjamin-Ono equation, Computational Methods for Differential Equations, 8 (2020), 424–445. https://doi.org/10.22034/cmde.2020.32382.1505 doi: 10.22034/cmde.2020.32382.1505 |
[19] | M. Alquran, A. Jarrah, E. V. Krishnan, Solitary wave solutions of the phi-four equation and the breaking soliton system by means of Jacobi elliptic sine-cosine expansion method, Nonlinear Dynamics and Systems Theory, 18 (2018), 233–240. |
[20] | R. Roy, M. A. Akbar, A. M. Wazwaz, Exact wave solutions for the nonlinear time fractional Sharma-Tasso-Olver equation and the fractional Klein-Gordon equation in mathematical physics, Opt. Quant. Electron., 50 (2018), 25. https://doi.org/10.1007/s11082-017-1296-9 doi: 10.1007/s11082-017-1296-9 |
[21] | A. A. Al Qarni, A. A. Alshaery, H. O. Bakodah, Optical solitons via the collective variable method for the Schr$\ddot{o}$dinger-Hirota equation, Int. J. Appl. Comput. Math., 7 (2021), 8. https://doi.org/10.1007/s40819-020-00941-z doi: 10.1007/s40819-020-00941-z |
[22] | P. Veeresha, D. G. Prakasha, D. Kumar, D. Baleanu, J. Singh, An efficient computational technique for fractional model of generalized Hirota-Satsuma-coupled Korteweg-de Vries and coupled modified Korteweg-de Vries equations, J. Comput. Nonlin. Dyn., 17 (2020), 071003. https://doi.org/10.1115/1.4046898 doi: 10.1115/1.4046898 |
[23] | A. M. Wazwaz, Exact solutions to nonlinear diffusion equations obtained by the decomposition method, Appl. Math. Comput., 123 (2001), 109–122. https://doi.org/10.1016/S0096-3003(00)00064-3 doi: 10.1016/S0096-3003(00)00064-3 |
[24] | H. Eltayeb, A. Kilicman, S. Mesloub, Modified Laplace decomposition method for solving system of equations Emden-Fowler type, J. Comput. Theor. Nanosci., 12 (2015), 5297–5301. https://doi.org/10.1166/jctn.2015.4518 doi: 10.1166/jctn.2015.4518 |
[25] | H. O. Bakodah, Modified Adomian decomposition method for the generalized fifth order KdV equations, Amer. J. Comput. Math., 3 (2013), 53–58. https://doi.org/10.4236/ajcm.2013.31008 doi: 10.4236/ajcm.2013.31008 |
[26] | D. Kaya, M. Inc, On the solution of the nonlinear wave equation by the decomposition method, Bull. Malaysian Math. Soc., 22 (1999), 151–155. |
[27] | A. S. M. Alzaidi, A. M. Mubaraki, R. I. Nuruddeen, Effect of fractional temporal variation on the vibration of waves on elastic substrates with spatial non-homogeneity, AIMS Mathematics, 7 (2022), 13746–13762. https://doi.org/10.3934/math.2022757 doi: 10.3934/math.2022757 |
[28] | L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486 |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[30] | R. I. Nuruddeen, Laplace-based method for the linearized dynamical models in the presence of Hilfer fractional operator, Partial Differential Equations in Applied Mathematics, 5 (2022), 100248. https://doi.org/10.1016/j.padiff.2021.100248 doi: 10.1016/j.padiff.2021.100248 |
[31] | T. M. Elzaki, S. A. Ahmed, M. Areshi, M. Chamek, Fractional partial differential equations and novel double integral transform, J. King Saud Univ. Sci., 34 (2022), 101832. https://doi.org/10.1016/j.jksus.2022.101832 doi: 10.1016/j.jksus.2022.101832 |
[32] | A. Apelblat, F. Mainardi, Application of the Efros theorem to the function represented by the inverse Laplace transform of $ s^{-\mu}e^{-s ^{\mu}}$, Symmetry, 13 (2021), 354. https://doi.org/10.3390/sym13020354 doi: 10.3390/sym13020354 |
[33] | R. I. Nuruddeen, Elzaki decomposition method and its applications in solving linear and nonlinear Schr$\ddot{o}$dinger equations, Sohag J. Math., 4 (2017), 31–35. https://doi.org/10.18576/sjm/040201 doi: 10.18576/sjm/040201 |
[34] | P. Pandey, S. Kumar, J. F. Gomez-Aguilar, Numerical solution of the time fractional reaction-advection-diffusion equation in porous media, J. Appl. Comput. Mech., 8 (2022), 84–96. https://doi.org/10.22055/JACM.2019.30946.1796 doi: 10.22055/JACM.2019.30946.1796 |
[35] | H. Eltayeb, S. Mesloub, Application of conformable decomposition method for solving conformable fractional coupled Burger's equation, J. Funct. Space., 2021 (2021), 6613619. https://doi.org/10.1155/2021/6613619 doi: 10.1155/2021/6613619 |
[36] | R. I. Nuruddeen, L. Muhammad, A. M. Nass, T. A. Sulaiman, A review of the integral transforms-based decomposition methods and their applications in solving nonlinear PDEs, Palestine Journal of Mathematics, 7 (2018), 262–280. |
[37] | H. Eltayeb, I. Bachar, A. Kilicman, On conformable double Laplace transform and one dimensional fractional coupled Burger's equation, Symmetry, 11 (2019), 417. https://doi.org/10.3390/sym11030417 doi: 10.3390/sym11030417 |
[38] | A. M. Wazwaz, A reliable technique for solving linear and nonlinear Schrodinger equations by Adomian decomposition method, Bull. Inst. Math., 29 (2001), 125–134. |
[39] | A. Mubaraki, H. Kim, R. I. Nuruddeen, U. Akram, Y. Akbar, Wave solutions and numerical validation for the coupled reaction-advection-diffusion dynamical model in a porous medium, Commun. Theor. Phys., in press. https://doi.org/10.1088/1572-9494/ac822a |