The need to meet current energy demands while protecting the interests of future generations has driven people to adopt regulatory frameworks that promote the careful use of limited resources. Among these resources, the sun is an everlasting source of energy. Solar energy stands out as a prime example of a renewable and environmentally friendly energy source. An imperative requirement exists for precise and dependable decision-making methods for the selection of the most efficacious solar cell. We aimed to address this particular issue. The theory of complex intuitionistic fuzzy sets (CIFS) adeptly tackles ambiguity, encompassing complex problem formulations characterized by both intuitionistic uncertainty and periodicity. We introduced two aggregation operators: The complex intuitionistic fuzzy dynamic ordered weighted averaging (CIFDOWA) operator and the complex intuitionistic fuzzy dynamic ordered weighted geometric (CIFDOWG) operator. Noteworthy features of these operators were stated, and significant special cases were meticulously outlined. An updated score function was devised to address the deficiencies, identified in the current score function within the context of CIF knowledge. In addition, we devised a methodical strategy for managing multiple attribute decision-making (MADM) problems that involve CIF data by implementing the proposed operators. To demonstrate the efficacy of the formulated algorithm, we presented a numerical example involving the selection of solar cells together with a comparative analysis with several well-established methodologies.
Citation: Dilshad Alghazzawi, Maryam Liaqat, Hanan Alolaiyan, Hamiden Abd El-Wahed Khalifa, Alhanouf Alburaikan, Qin Xin, Umer Shuaib. Innovative approaches to solar cell selection under complex intuitionistic fuzzy dynamic settings[J]. AIMS Mathematics, 2024, 9(4): 8406-8438. doi: 10.3934/math.2024409
The need to meet current energy demands while protecting the interests of future generations has driven people to adopt regulatory frameworks that promote the careful use of limited resources. Among these resources, the sun is an everlasting source of energy. Solar energy stands out as a prime example of a renewable and environmentally friendly energy source. An imperative requirement exists for precise and dependable decision-making methods for the selection of the most efficacious solar cell. We aimed to address this particular issue. The theory of complex intuitionistic fuzzy sets (CIFS) adeptly tackles ambiguity, encompassing complex problem formulations characterized by both intuitionistic uncertainty and periodicity. We introduced two aggregation operators: The complex intuitionistic fuzzy dynamic ordered weighted averaging (CIFDOWA) operator and the complex intuitionistic fuzzy dynamic ordered weighted geometric (CIFDOWG) operator. Noteworthy features of these operators were stated, and significant special cases were meticulously outlined. An updated score function was devised to address the deficiencies, identified in the current score function within the context of CIF knowledge. In addition, we devised a methodical strategy for managing multiple attribute decision-making (MADM) problems that involve CIF data by implementing the proposed operators. To demonstrate the efficacy of the formulated algorithm, we presented a numerical example involving the selection of solar cells together with a comparative analysis with several well-established methodologies.
[1] | K. S. Jeong, W. Y. Lee, C. S. Kim, Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics, J. Power Sources, 145 (2005), 319–326. https://doi.org/10.1016/j.jpowsour.2005.01.076 doi: 10.1016/j.jpowsour.2005.01.076 |
[2] | J. A. Carrión, A. E. Estrella, F. A. Dols, M. Z. Toro, M. Rodríguez, A. R. Ridao, Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants, Renew. Sust. Energ. Rev., 12 (2007), 2358–2380. https://doi.org/10.1016/j.rser.2007.06.011 doi: 10.1016/j.rser.2007.06.011 |
[3] | F. Cavallaro, Multi-criteria decision aid to assess concentrated solar thermal technologies, Renew. Energ., 34 (2008), 1678–1685. https://doi.org/10.1016/j.renene.2008.12.034 doi: 10.1016/j.renene.2008.12.034 |
[4] | F. Cavallaro, Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems, Appl. Energ., 87 (2009), 496–503. https://doi.org/10.1016/j.apenergy.2009.07.009 doi: 10.1016/j.apenergy.2009.07.009 |
[5] | F. Cavallaro, A comparative assessment of thin-film photovoltaic production processes using the ELECTRE Ⅲ method, Energ. Policy, 38 (2009), 463–474. https://doi.org/10.1016/j.enpol.2009.09.037 doi: 10.1016/j.enpol.2009.09.037 |
[6] | S. Zeng, H. Garg, M. Munir, T. Mahmood, A. Hussain, A multi-attribute decision making process with immediate probabilistic interactive averaging aggregation operators of T-spherical fuzzy sets and its application in the selection of solar cells, Energies, 12 (2019), 4436. https://doi.org/10.3390/en12234436 doi: 10.3390/en12234436 |
[7] | D. Alghazzawi, A. Noor, H. Alolaiyan, H. A. E. Khalifa, A. Alburaikan, S. Dai, et al., A comprehensive study for selecting optimal treatment modalities for blood cancer in a Fermatean fuzzy dynamic environment, Sci. Rep., 14 (2024), 1896. https://doi.org/10.1038/s41598-024-51942-7 doi: 10.1038/s41598-024-51942-7 |
[8] | H. Alolaiyan, A. Razaq, H. Ashfaq, D. Alghazzawi, U. Shuaib, J. B. Liu, Improving similarity measures for modeling real-world issues with interval-valued intuitionistic fuzzy sets, IEEE Access, 12 (2024), 10482–10496. https://doi.org/10.1109/ACCESS.2024.3351205 doi: 10.1109/ACCESS.2024.3351205 |
[9] | R. R. Kumar, S. Mishra, C. Kumar, A novel framework for cloud service evaluation and selection using hybrid MCDM methods, Arab. J. Sci. Eng., 43 (2018), 7015–7030. https://doi.org/10.1201/b11149-8 doi: 10.1201/b11149-8 |
[10] | A. Razzaque, A. Razaq, A. Khalid, I. Masmali, U. Shuaib, G. Alhamzi, Selecting an optimal approach to reduce drivers of climate change in a complex intuitionistic fuzzy environment, Sustainability, 15 (2023), 12300. https://doi.org/10.3390/su151612300 doi: 10.3390/su151612300 |
[11] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[12] | F. Fatimah, D. Rosadi, R. F. Hakim, J. C. R. Alcantud, N-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829–3842. https://doi.org/10.1109/FUZZIEEE.2017.8015428 doi: 10.1109/FUZZIEEE.2017.8015428 |
[13] | M. Akram, A. Adeel, J. C. R. Alcantud, Group decision-making methods based on hesitant N-soft sets, Expert Syst. Appl., 115 (2019), 95–105. https://doi.org/10.1016/j.eswa.2018.07.060 doi: 10.1016/j.eswa.2018.07.060 |
[14] | M. Akram, G. Ali, J. C. Alcantud, F. Fatimah, Parameter reductions in N‐soft sets and their applications in decision‐making, Expert Syst., 38 (2021), e12601. https://doi.org/10.1111/exsy.12601 doi: 10.1111/exsy.12601 |
[15] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[16] | S. Liu, W. Yu, F. T. Chan, B. Niu, A variable weight‐based hybrid approach for multi‐attribute group decision making under interval‐valued intuitionistic fuzzy sets, Int. J. Intell. Syst., 36 (2021), 1015–1052. https://doi.org/10.1002/int.22329 doi: 10.1002/int.22329 |
[17] | N. X. Thao, Some new entropies and divergence measures of intuitionistic fuzzy sets based on Archimedean t-conorm and application in supplier selection, Soft Comput., 25 (2021), 5791–5805. https://doi.org/10.1007/s00500-021-05575-x doi: 10.1007/s00500-021-05575-x |
[18] | B. Gohain, P. Dutta, S. Gogoi, R. Chutia, Construction and generation of distance and similarity measures for intuitionistic fuzzy sets and various applications, Int. J. Intell. Syst., 36 (2021), 7805–7838. https://doi.org/10.1002/int.22608 doi: 10.1002/int.22608 |
[19] | H. Garg, D. Rani, Novel similarity measure based on the transformed right-angled triangles between intuitionistic fuzzy sets and its applications, Cogn. Comput., 13 (2021), 447–465. https://doi.org/10.1007/s12559-020-09809-2 doi: 10.1007/s12559-020-09809-2 |
[20] | K. Hayat, Z. Tariq, E. Lughofer, M. F. Aslam, New aggregation operators on group-based generalized intuitionistic fuzzy soft sets, Soft Comput., 25 (2021), 13353–13364. https://doi.org/10.1007/s00500-021-06181-7 doi: 10.1007/s00500-021-06181-7 |
[21] | F. Ecer, D. Pamucar, MARCOS technique under intuitionistic fuzzy environment for determining the COVID-19 pandemic performance of insurance companies in terms of healthcare services, Appl. Soft Comput., 104 (2021), 107199. https://doi.org/10.1016/j.asoc.2021.107199 doi: 10.1016/j.asoc.2021.107199 |
[22] | X. Wu, Y. Song, Y. Wang, Distance-based knowledge measure for intuitionistic fuzzy sets with its application in decision making, Entropy, 23 (2021), 1119. https://doi.org/10.3390/e23091119 doi: 10.3390/e23091119 |
[23] | E. P. Augustine, Novel correlation coefficient for intuitionistic fuzzy sets and its application to multi-criteria decision-making problems, International Journal of Fuzzy System Applications, 10 (2021), 39–58. https://doi.org/10.4018/IJFSA.2021040103 doi: 10.4018/IJFSA.2021040103 |
[24] | J. Yang, Y. Yao, A three-way decision based construction of shadowed sets from Atanassov intuitionistic fuzzy sets, Inform. Sciences, 577 (2021), 1–21. https://doi.org/10.1016/j.ins.2021.06.065 doi: 10.1016/j.ins.2021.06.065 |
[25] | T. Mahmood, W. Ali, Z. Ali, R. Chinram, Power aggregation operators and similarity measures based on improved intuitionistic hesitant fuzzy sets and their applications to multiple attribute decision making, Comp. Model. Eng., 126 (2021), 1165–1187. https://doi.org/10.32604/cmes.2021.014393 doi: 10.32604/cmes.2021.014393 |
[26] | L.Ocampo, R. A. Tanaid, A. M. Tiu, E. J. Selerio, K. Yamagishi, Classifying the degree of exposure of customers to COVID-19 in the restaurant industry: A novel intuitionistic fuzzy set extension of the TOPSIS-Sort, Appl. Soft Comput., 113 (2021), 107906. https://doi.org/10.1016/j.asoc.2021.107906 doi: 10.1016/j.asoc.2021.107906 |
[27] | L. Dymova, K Kaczmarek, P. Sevastjanov, Ł. Sułkowski, K. Przybyszewski, An approach to generalization of the intuitionistic fuzzy TOPSIS method in the framework of evidence theory, J. Artif. Intell. Soft, 11 (2021), 157–175. https://doi.org/10.2478/jaiscr-2021-0010 doi: 10.2478/jaiscr-2021-0010 |
[28] | J. C. R. Alcantud, A. Z. Khameneh, A. Kilicman, Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information, Inform. Sciences, 514 (2020), 106–117. https://doi.org/10.1016/j.ins.2019.12.008 doi: 10.1016/j.ins.2019.12.008 |
[29] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119 |
[30] | P. Liu, Z. Ali, T. Mahmood, The distance measures and cross-entropy based on complex fuzzy sets and their application in decision making, J. Intell. Fuzzy Syst., 39 (2020), 3351–3374. https://doi.org/10.3233/JIFS-191718 doi: 10.3233/JIFS-191718 |
[31] | Y. Al-Qudah, N. Hassan, Operations on complex multi-fuzzy sets, J. Intell. Fuzzy Syst., 33 (2017), 1527–1540. https://doi.org/10.3233/JIFS-162428 doi: 10.3233/JIFS-162428 |
[32] | A. U. M. Alkouri, A. R. Salleh, Linguistic variable, hedges and several distances on complex fuzzy sets, J. Intell. Fuzzy Syst., 26 (2014), 2527–2535. https://doi.org/10.3233/IFS-130923 doi: 10.3233/IFS-130923 |
[33] | C. Li, T. W. Chiang, Function approximation with complex neuro-fuzzy system using complex fuzzy sets-a new approach, New Generat. Comput., 29 (2011), 261–276. https://doi.org/10.1007/s00354-011-0302-1 doi: 10.1007/s00354-011-0302-1 |
[34] | A. M. D. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conference Proceedings, 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515 |
[35] | H. Garg, D. Rani, Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to decision-making process, Artif. Intell. Rev., 53 (2020), 3595–3620. https://doi.org/10.1007/s10462-019-09772-x doi: 10.1007/s10462-019-09772-x |
[36] | H. Garg, D. Rani, Robust averaging-geometric aggregation operators for complex intuitionistic fuzzy sets and their applications to MCDM process, Arab. J. Sci. Eng., 45 (2020), 2017–2033. https://doi.org/10.1007/s13369-019-03925-4 doi: 10.1007/s13369-019-03925-4 |
[37] | H. Garg, D. Rani, Generalized geometric aggregation operators based on t-norm operations for complex intuitionistic fuzzy sets and their application to decision-making, Cogn. Comput., 12 (2020), 679–698. https://doi.org/10.1007/s12559-019-09678-4 doi: 10.1007/s12559-019-09678-4 |
[38] | D. Alghazzawi, M. Liaqat, A. Razaq, H. Alolaiyan, U. Shuaib, J. B. Liu, Selection of optimal approach for Cardiovascular disease diagnosis under complex intuitionistic fuzzy dynamic environment, Mathematics, 11 (2023), 4616. https://doi.org/10.3390/math11224616 doi: 10.3390/math11224616 |
[39] | I. Masmali, A. Khalid, U. Shuaib, A. Razaq, H. Garg, A. Razzaque, On selection of the efficient water purification strategy at commercial scale using complex intuitionistic fuzzy dombi environment, Water, 15 (2023), 1907. https://doi.org/10.3390/w15101907 doi: 10.3390/w15101907 |
[40] | Z. Ali, T. Mahmood, M. Aslam, R. Chinram, Another view of complex intuitionistic fuzzy soft sets based on prioritized aggregation operators and their applications to multiattribute decision making, Mathematics, 9 (2021), 1922. https://doi.org/10.3390/math9161922 doi: 10.3390/math9161922 |
[41] | M. Lin, X. Li, L. Chen, Linguistic q‐rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators, Int. J. Intell. Syst., 35 (2020), 217–249. https://doi.org/10.1002/int.22136 doi: 10.1002/int.22136 |
[42] | M. Lin, X. Li, R. Chen, H. Fujita, J. Lin, Picture fuzzy interactional partitioned Heronian mean aggregation operators: an application to MADM process, Artif. Intell. Rev., 2022 (2022). 1–38. https://doi.org/10.1007/s10462-021-09953-7 doi: 10.1007/s10462-021-09953-7 |
[43] | M. Lin, J. Wei, Z. Xu, R. Chen, Multiattribute group decision-making based on linguistic pythagorean fuzzy interaction partitioned bonferroni mean aggregation operators, Complexity, 2018 (2018), 9531064. https://doi.org/10.1155/2018/9531064 doi: 10.1155/2018/9531064 |
[44] | R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE T. Syst. Man Cy., 18 (1988), 183–190. https://doi.org/10.1109/21.87068 doi: 10.1109/21.87068 |
[45] | R. R. Yager, J. Kacprzyk, The ordered weighted averaging operators: theory and applications, New York: Springer, 2012. https://doi.org/10.1007/978-1-4615-6123-1 |
[46] | J. Kacprzyk, S. Zadrożny, Computing with words in intelligent database querying: standalone and Internet-based applications, Inform. Sciences, 134 (2001), 71–109. https://doi.org/10.1016/S0020-0255(01)00093-7 doi: 10.1016/S0020-0255(01)00093-7 |
[47] | T. Calvo, G. Mayor, R. Mesiar, Aggregation operators: new trends and applications, New York: Springer, 2012. https://doi.org/10.1007/978-3-7908-1787-4 |
[48] | R. R. Yager, OWA aggregation over a continuous interval argument with applications to decision making, New York: Springer, 1963. https://doi.org/10.1109/TSMCB.2004.831154 |
[49] | R. R. Yager, Generalized OWA aggregation operators, Fuzzy Optim. Decis. Ma., 3 (2004), 93–107. https://doi.org/10.1023/B:FODM.0000013074.68765.97 doi: 10.1023/B:FODM.0000013074.68765.97 |
[50] | Z. S. Xu, Extended C-OWA operators and their use in uncertain multi-attribute decision making, Systems Eng., 25 (2005), 7–13. |
[51] | X. Liu, Some properties of the weighted OWA operator, IEEE T. Syst. Man Cy., 36 (2006), 118–127. https://doi.org/10.1109/TSMCA.2005.854496 doi: 10.1109/TSMCA.2005.854496 |
[52] | F. Chiclana, F. Herrera, E. Herrera-Viedma, Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations, Fuzzy Set. Syst., 122 (2001), 277–291. https://doi.org/10.1016/S0165-0114(00)00004-X doi: 10.1016/S0165-0114(00)00004-X |
[53] | Z. S. Xu, Q. L. Da, The ordered weighted geometric averaging operators, Int. J. Intell. Syst., 17 (2002), 709–716. https://doi.org/10.1002/int.10045 doi: 10.1002/int.10045 |
[54] | Z. Xu, Q. L. Da, An overview of operators for aggregating information, Int. J. Intell. Syst., 18 (2003), 953–969. https://doi.org/10.1002/int.10127 doi: 10.1002/int.10127 |
[55] | Z. Xu, R. R. Yager, Dynamic intuitionistic fuzzy multi-attribute decision making, Int. J. Approx. Reason., 48 (2008), 246–262. https://doi.org/10.1016/j.ijar.2007.08.008 doi: 10.1016/j.ijar.2007.08.008 |
[56] | G. W. Wei, Some geometric aggregation functions and their application to dynamic multiple attribute decision making in the intuitionistic fuzzy setting, Int. J. Uncertain. Fuzz., 17 (2009), 179–196. https://doi.org/10.1142/S0218488509005802 doi: 10.1142/S0218488509005802 |