Research article

Intuitionistic fuzzy variational inequalities and their applications

  • Received: 05 August 2024 Revised: 28 October 2024 Accepted: 14 November 2024 Published: 05 December 2024
  • MSC : 62G10, 62G20, 62N05

  • In this paper, a new class of generalized convex (concave) fuzzy mappings are introduced, which is called intuitionistic convex (concave) fuzzy mappings from the convex set $ {K\subseteq \mathbb{R}}^{n} $ to the set of intuitionistic fuzzy numbers. By using the concept of epigraph, the characterization of intuitionistic convex fuzzy mappings is also discussed. Different types of intuitionistic convex (concave) fuzzy mappings are defined and their properties are investigated. Then, we discuss some applications of intuitionistic fuzzy convex mappings in fuzzy optimization. Additionally, some variational inequalities, known as intuitionistic fuzzy variational inequality and intuitionistic fuzzy variational mixed inequalities, are introduced. The results obtained in this paper can be regarded as refinements and extensions of previously established results.

    Citation: Tareq Saeed. Intuitionistic fuzzy variational inequalities and their applications[J]. AIMS Mathematics, 2024, 9(12): 34289-34310. doi: 10.3934/math.20241634

    Related Papers:

  • In this paper, a new class of generalized convex (concave) fuzzy mappings are introduced, which is called intuitionistic convex (concave) fuzzy mappings from the convex set $ {K\subseteq \mathbb{R}}^{n} $ to the set of intuitionistic fuzzy numbers. By using the concept of epigraph, the characterization of intuitionistic convex fuzzy mappings is also discussed. Different types of intuitionistic convex (concave) fuzzy mappings are defined and their properties are investigated. Then, we discuss some applications of intuitionistic fuzzy convex mappings in fuzzy optimization. Additionally, some variational inequalities, known as intuitionistic fuzzy variational inequality and intuitionistic fuzzy variational mixed inequalities, are introduced. The results obtained in this paper can be regarded as refinements and extensions of previously established results.



    加载中


    [1] Y. M. Liu, Some properties of convex fuzzy sets, J. Math. Anal. Appl., 111 (1985), 119–129.
    [2] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.
    [3] R. Lowen, Convex fuzzy sets, Fuzzy Sets Syst., 3 (1980), 291–310. https://doi.org/10.1016/0165-0114(80)90025-1 doi: 10.1016/0165-0114(80)90025-1
    [4] E. Ammar, J. Metz, On fuzzy convexity and parametric fuzzy optimization, Fuzzy Sets Syst., 49 (1992), 135–141. https://doi.org/10.1016/0165-0114(92)90319-Y doi: 10.1016/0165-0114(92)90319-Y
    [5] M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. https://doi.org/10.3934/math.2022024 doi: 10.3934/math.2022024
    [6] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-Convex interval-valued functions by means of pseudo-order relation, Math. Meth. Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855
    [7] A. K. Katsaras, D. B. Liu, Fuzzy vector spaces and fuzzy topological vectors spaces, J. Math. Anal. Appl., 58 (1977), 135–146. https://doi.org/10.1016/0022-247X(77)90233-5 doi: 10.1016/0022-247X(77)90233-5
    [8] M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math. Inf. Sci., 15 (2021), 459–470. http://doi.org/10.18576/amis/150408 doi: 10.18576/amis/150408
    [9] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [10] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673
    [11] M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 175. https://doi.org/10.3390/axioms10030175 doi: 10.3390/axioms10030175
    [12] D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613–626. https://doi.org/10.1080/00207727808941724 doi: 10.1080/00207727808941724
    [13] R. Goetschel, W. Voxman, Topological properties of fuzzy numbers, Fuzzy Sets Syst., 10 (1983), 87–99. https://doi.org/10.1016/S0165-0114(83)80107-9 doi: 10.1016/S0165-0114(83)80107-9
    [14] S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. https://doi.org/10.1016/0165-0114(92)90256-4 doi: 10.1016/0165-0114(92)90256-4
    [15] Y. R. Syau, On convex and concave fuzzy mappings, Fuzzy Sets Syst., 103 (1999), 163–168. https://doi.org/10.1016/S0165-0114(97)00210-8 doi: 10.1016/S0165-0114(97)00210-8
    [16] N. Furukawa, Convexity and local Lipschitz continuity of fuzzy-valued mappings, Fuzzy Sets Syst., 93 (1998), 113–119. https://doi.org/10.1016/S0165-0114(96)00192-3 doi: 10.1016/S0165-0114(96)00192-3
    [17] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6
    [18] H. Yan, J. Xu, A class of convex fuzzy mappings, Fuzzy Sets Syst., 129 (2002), 47–56. https://doi.org/10.1016/S0165-0114(01)00157-9 doi: 10.1016/S0165-0114(01)00157-9
    [19] Y. R. Syau, (Φ1, Φ2)-convex fuzzy mappings, Fuzzy Sets Syst., 138 (2003), 617–625. https://doi.org/10.1016/S0165-0114(02)00527-4 doi: 10.1016/S0165-0114(02)00527-4
    [20] Z. Liu, Z. Xu, X. Zheng, Y. Zhao, J. Wang, 3D path planning in threat environment based on fuzzy logic, J. Intell. Fuzzy Syst., 1 (2024), 7021–7034. https://doi.org/10.3233/JIFS-232076 doi: 10.3233/JIFS-232076
    [21] M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some fuzzy Riemann-Liouville fractional integral inequalities for preinvex fuzzy interval-valued functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313
    [22] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611
    [23] M. B. Khan, G. Santos-García, H. G. Zaini, S. Treanțǎ, M. S. Soliman, Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional calculus, Mathematics, 10 (2022), 534. https://doi.org/10.3390/math10040534 doi: 10.3390/math10040534
    [24] M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856–1870. https://doi.org/10.2991/ijcis.d.210616.001 doi: 10.2991/ijcis.d.210616.001
    [25] M. B. Khan, P. O. Mohammed, M. A. Noor, K. Abuahalnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580. https://doi.org/10.3934/mbe.2021325 doi: 10.3934/mbe.2021325
    [26] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 149. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8
    [27] M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-Log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math. Inf. Sci., 15 (2021), 459–470. http://dx.doi.org/10.18576/amis/150408
    [28] M. A. Noor, Fuzzy preinvex functions, Fuzzy Sets Syst., 64 (1994), 95–104. https://doi.org/10.1016/0165-0114(94)90011-6 doi: 10.1016/0165-0114(94)90011-6
    [29] J. E. Macías-Díaz, M. B. Khan, M. A. Noor, A. M. Abd Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022), 4266–4292.
    [30] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204
    [31] M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063
    [32] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006
    [33] Z. Wu, J. Xu, Generalized convex fuzzy mappings and fuzzy variational-like inequality, Fuzzy Sets Syst., 160 (2009), 1590–1619. https://doi.org/10.1016/j.fss.2008.11.031 doi: 10.1016/j.fss.2008.11.031
    [34] K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, 35 (1999), 1–137.
    [35] K. T. Atanassov, Interval valued intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, 35 (1999), 139–177.
    [36] P. Burillo, H. Bustince, V. Mohedano, Some definitions of intuitionistic fuzzy number. First properties, In: Proceedings of the 1st Workshop on Fuzzy Based Expert Systems, 1994, 53–55.
    [37] Y. H. Shen, F. X. Wang, W. A Chen, A note on intuitionistic fuzzy mappings, Iran. J. Fuzzy Syst., 9 (2012), 63–76.
    [38] M. B. Khan, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178
    [39] M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new estimates on coordinates of left and right convex interval-valued functions based on pseudo order relation, Symmetry, 14 (2022), 473. https://doi.org/10.3390/sym14030473 doi: 10.3390/sym14030473
    [40] S. Treanţă, M. B. Khan, T. Saeed, On some variational inequalities involving second-order partial derivatives, Fractal Fract., 6 (2022), 236. https://doi.org/10.3390/fractalfract6050236 doi: 10.3390/fractalfract6050236
    [41] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [42] M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, M. S. Soliman, Fractional calculus for convex functions in interval-valued settings and inequalities, Symmetry, 14 (2022), 341. https://doi.org/10.3390/sym14020341 doi: 10.3390/sym14020341
    [43] M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite–Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex Functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083
    [44] S. Saha, P. Debnath, Intuitionistic fuzzy φ-convexity and Intuitionistic fuzzy decision making, Int. J. Eng. Sci. Tech., 10 (2018), 17–179. http://doi.org/10.21817/ijest/2018/v10i2S/181002S031
    [45] J. Y. Dong, S. P. Wan, Interval-valued intuitionistic fuzzy best-worst method with additive consistency, Expert Syst. Appl., 236 (2024), 121213. https://doi.org/10.1016/j.eswa.2023.121213 doi: 10.1016/j.eswa.2023.121213
    [46] S. P. Wan, J. Y. Dong, S. M. Chen, A novel intuitionistic fuzzy best-worst method for group decision making with intuitionistic fuzzy preference relations, Inform. Sci., 666 (2024), 120404. https://doi.org/10.1016/j.ins.2024.120404 doi: 10.1016/j.ins.2024.120404
    [47] J. Y. Dong, X. Y. Lu, H. C. Li, S. P. Wan, S. Q. Yang, Consistency and consensus enhancing in group decision making with interval-valued intuitionistic multiplicative preference relations based on bounded confidence, Inform. Sci., 652 (2024), 119727. https://doi.org/10.1016/j.ins.2023.119727 doi: 10.1016/j.ins.2023.119727
    [48] J. Y. Dong, S. P. Wan, Type-2 interval-valued intuitionistic fuzzy matrix game and application to energy vehicle industry development, Expert Syst. Appl., 249 (2024), 123398. https://doi.org/10.1016/j.eswa.2024.123398 doi: 10.1016/j.eswa.2024.123398
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(118) PDF downloads(30) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog