We recall classical themes such as "on hearing the shape of a drum" or "can one hear the shape of a drum?", and the discovery of Milnor, who constructed two flat tori which are isospectral but not isometric. In this article, we consider the question of finding conditions under which an $ n $-dimensional closed Riemannian manifold $ \left(M^{n}, g\right) $ having a non-zero eigenvalue $ nc $ for a positive constant $ c $ (that is, has same non-zero eigenvalue as first non-zero eigenvalue of the sphere $ S^{n}(c) $), is isometric to $ S^{n}(c) $. We address this issue in two situations. First, we consider the compact $ \left(M^{n}, g\right) $ as the hypersurface of the Euclidean space $ \left(R^{n+1}, \langle, \rangle \right) $ with isometric immersion $ f:\left(M^{n}, g\right) \rightarrow $ $ \left(R^{n+1}, \langle, \rangle \right) $ and a constant unit vector $ \overrightarrow{a} $ such that the function $ \rho = \langle f, \overrightarrow{a}\rangle $ satisfying $ \Delta \rho = -nc\rho $ for a positive constant $ c $ is isometric to $ S^{n}(c) $ if and only if $ \left(M^{n}, g\right) $ is isometric to $ S^{n}(c) $ provided the integral of Ricci curvature $ Ric\left(\nabla \rho, \nabla \rho \right) $ has an appropriate lower bound. In the second situation, we consider that the compact $ \left(M^{n}, g\right) $ admits a non-trivial concircular vector field $ \xi $ with potential function $ \sigma $ satisfying $ \Delta \sigma = -nc\sigma $ for a positive constant $ c $ and a specific function $ f $ related to $ \xi $ (called circular function) is constant along the integral curves of $ \xi $ if and only if $ \left(M^{n}, g\right) $ is isometric to $ S^{n}(c) $.
Citation: Sharief Deshmukh, Amira Ishan, Olga Belova. On eigenfunctions corresponding to first non-zero eigenvalue of the sphere $ S^n(c) $ on a Riemannian manifold[J]. AIMS Mathematics, 2024, 9(12): 34272-34288. doi: 10.3934/math.20241633
We recall classical themes such as "on hearing the shape of a drum" or "can one hear the shape of a drum?", and the discovery of Milnor, who constructed two flat tori which are isospectral but not isometric. In this article, we consider the question of finding conditions under which an $ n $-dimensional closed Riemannian manifold $ \left(M^{n}, g\right) $ having a non-zero eigenvalue $ nc $ for a positive constant $ c $ (that is, has same non-zero eigenvalue as first non-zero eigenvalue of the sphere $ S^{n}(c) $), is isometric to $ S^{n}(c) $. We address this issue in two situations. First, we consider the compact $ \left(M^{n}, g\right) $ as the hypersurface of the Euclidean space $ \left(R^{n+1}, \langle, \rangle \right) $ with isometric immersion $ f:\left(M^{n}, g\right) \rightarrow $ $ \left(R^{n+1}, \langle, \rangle \right) $ and a constant unit vector $ \overrightarrow{a} $ such that the function $ \rho = \langle f, \overrightarrow{a}\rangle $ satisfying $ \Delta \rho = -nc\rho $ for a positive constant $ c $ is isometric to $ S^{n}(c) $ if and only if $ \left(M^{n}, g\right) $ is isometric to $ S^{n}(c) $ provided the integral of Ricci curvature $ Ric\left(\nabla \rho, \nabla \rho \right) $ has an appropriate lower bound. In the second situation, we consider that the compact $ \left(M^{n}, g\right) $ admits a non-trivial concircular vector field $ \xi $ with potential function $ \sigma $ satisfying $ \Delta \sigma = -nc\sigma $ for a positive constant $ c $ and a specific function $ f $ related to $ \xi $ (called circular function) is constant along the integral curves of $ \xi $ if and only if $ \left(M^{n}, g\right) $ is isometric to $ S^{n}(c) $.
[1] | R. L. Bishop, B. O'Neill, Manifolds of Negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1–49. https://doi.org/10.1090/S0002-9947-1969-0251664-4 doi: 10.1090/S0002-9947-1969-0251664-4 |
[2] | B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific: Singapore, 1983. https: //doi.org/10.1142/0065 |
[3] | B.-Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535–1547. https://doi.org/10.4134/BKMS.2015.52.5.1535 doi: 10.4134/BKMS.2015.52.5.1535 |
[4] | S. Deshmukh, An integral formula for compact hypersurfaces in a Euclidean space and its applications, Glasgow Math. J., 34 (1992), 309–311. https://doi.org/10.1017/S0017089500008867 doi: 10.1017/S0017089500008867 |
[5] | M. E. Fisher, On hearing the shape of a drum, J. Combinatorial Theory, 1 (1966), 105–125. https://doi.org/10.1016/S0021-9800(66)80008-X doi: 10.1016/S0021-9800(66)80008-X |
[6] | N. Ejiri, A construction of Non-flat compact irreducible Riemannian manifolds which are isospectral but not isometric, Math. Z., 168 (1979), 207–212. https://doi.org/10.1007/BF01214512 doi: 10.1007/BF01214512 |
[7] | P. B. Gilkey, On spherical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant, Compositio Mathematica, 56 (1985), 171–200. |
[8] | R. Gornet, J. McGowan, Lens spaces, isospectral on forms but not on functions, LMS J. Comput. Math., 9 (2006), 270–286. https://doi.org/10.1112/S1461157000001273 doi: 10.1112/S1461157000001273 |
[9] | A. Ikeda, Y. Yamamoto, On the spectra of a 3-dimensional lens space, Osaka J. Math., 16 (1979), 447–469. |
[10] | A. Ikeda, On the spectrum of a riemannian manifold of positive constant curvature, Osaka J. Math., 17 (1980), 75–93. |
[11] | M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 73 (1966), 1–23. https://doi.org/10.1080/00029890.1966.11970915 doi: 10.1080/00029890.1966.11970915 |
[12] | J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci., 51 (1964), 542. https://doi.org/10.1073/pnas.51.4.542 doi: 10.1073/pnas.51.4.542 |
[13] | M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333–340. https://doi.org/10.2969/jmsj/01430333 doi: 10.2969/jmsj/01430333 |
[14] | M. Obata, The conjectures about conformal transformations, J. Diff. Geom., 6 (1971), 247–258. https://doi.org/10.4310/jdg/1214430407 doi: 10.4310/jdg/1214430407 |
[15] | M. F. Vigneras, Theorie des nombres, C. R. Acad. Sci. Paris. Ser. A, 287 (1978), 47–49. |
[16] | K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker Inc.: New York, NY, USA, 1970. |
[17] | K. Yano, On the torse-forming directions in a Riemannian spaces, Proc. Imp. Acad., 20 (1944), 340–345. https://doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958 |