We prove that the first nonzero eigenvalue of the Laplace-Beltrami operator of equator-like minimal submanifold embedded in the sphere $ S^{n+1} $ is equal to $ n $. The proof uses the spectral properties of the heat kernel operator corresponding to the submanifold.
Citation: Ibrahim Aldayel. Value of first eigenvalue of some minimal hypersurfaces embedded in the unit sphere[J]. AIMS Mathematics, 2023, 8(11): 26532-26542. doi: 10.3934/math.20231355
We prove that the first nonzero eigenvalue of the Laplace-Beltrami operator of equator-like minimal submanifold embedded in the sphere $ S^{n+1} $ is equal to $ n $. The proof uses the spectral properties of the heat kernel operator corresponding to the submanifold.
[1] | I. Chavel, Eigenvalues in Riemannian geometry, Orlando: Academic Press, 1984. |
[2] | M. A. Choudhary, First nonzero eigenvalue of a pseudo-umbilical hypersurface in the unit sphere, Russ. Math., 58 (2014), 56–64. https://doi.org/10.3103/S1066369X14080076 doi: 10.3103/S1066369X14080076 |
[3] | J. Cheeger, S. T. Yau, A lower bound for the heat kernel, Commun. Pur. Appl. Math., 34 (1981), 465–480. https://doi.org/10.1002/cpa.3160340404 doi: 10.1002/cpa.3160340404 |
[4] | L. F. Cheung, P. F. Leung, Eigenvalues estimates for submanifolds with bounded mean curvature in the hyperbolic space, Math. Z., 236 (2001), 525–530. https://doi.org/10.1007/PL00004840 doi: 10.1007/PL00004840 |
[5] | J. Choe, R. Gulliver, Isoperimetric inequalities on minimal submanifolds of space forms, Manuscripta Math., 77 (1992), 169–189. https://doi.org/10.1007/BF02567052 doi: 10.1007/BF02567052 |
[6] | S. Deshmukh, First nonzero eigenvalue of a minimal hypersurface in the unit sphere, Annali di Mathematica, 191 (2012), 529–537. https://doi.org/10.1007/s10231-011-0194-1 doi: 10.1007/s10231-011-0194-1 |
[7] | H. Federer, Geometric measure theory, Berlin Heidelberg: Springer-Verlag, 1996. https://doi.org/10.1007/978-3-642-62010-2 |
[8] | A. Grigor'yan, Heat kernel and analysis on manifolds, Washington: American Mathematical Society/International Press, 2009. |
[9] | H. I. Choi, A. N. Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Differ. Geom., 18 (1983), 559–562. |
[10] | M. Kotani, The first eigenvalue of homogeneous minimal hypersurfaces in a unit sphere $S^{n+1}(1)$, Tohoku Math. J., 37 (1985), 523–532. https://doi.org/10.2748/tmj/1178228592 doi: 10.2748/tmj/1178228592 |
[11] | P. Li, Large time behaviour of the heat equation on complete manifolds with non-negative Ricci curvature, Ann. Math., 124 (1986), 1–21. https://doi.org/10.2307/1971385 doi: 10.2307/1971385 |
[12] | H. Muto, Y. Ohnita, H. Urakawa, Homogeneous minimal hypersurfaces in a unit sphere and the first eigenvalue of the Laplacian, Tohoku Math. J., 36 (1984), 253–267. https://doi.org/10.2748/tmj/1178228851 doi: 10.2748/tmj/1178228851 |
[13] | B. Solomon, The harmonic analysis of cubic isoparametric minimal hypersurfaces Ⅰ: Dimensions 3 and 6, Am. J. Math., 112 (1990), 157–203. https://doi.org/10.2307/2374713 doi: 10.2307/2374713 |
[14] | B. Solomon, The harmonic analysis of cubic isoparametric minimal hypersurfaces Ⅱ: Dimensions 12 and 24, Am. J. Math., 112 (1990), 205–241. https://doi.org/10.2307/2374714 doi: 10.2307/2374714 |
[15] | T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. https://doi.org/10.2969/jmsj/01840380 doi: 10.2969/jmsj/01840380 |
[16] | Z. Tang, W. Yan, Isoparametric foliation and Yau conjecture on the first eigenvalue, J. Differ. Geom., 94 (2013), 521–540. |
[17] | S. T. Yau, Seminar on differential geometry, Princeton: Princeton University Press, 1982. https://doi.org/10.1515/9781400881918 |