Research article

Value of first eigenvalue of some minimal hypersurfaces embedded in the unit sphere

  • Received: 18 July 2023 Revised: 22 August 2023 Accepted: 27 August 2023 Published: 18 September 2023
  • MSC : 47A75, 53A10, 53C42

  • We prove that the first nonzero eigenvalue of the Laplace-Beltrami operator of equator-like minimal submanifold embedded in the sphere $ S^{n+1} $ is equal to $ n $. The proof uses the spectral properties of the heat kernel operator corresponding to the submanifold.

    Citation: Ibrahim Aldayel. Value of first eigenvalue of some minimal hypersurfaces embedded in the unit sphere[J]. AIMS Mathematics, 2023, 8(11): 26532-26542. doi: 10.3934/math.20231355

    Related Papers:

  • We prove that the first nonzero eigenvalue of the Laplace-Beltrami operator of equator-like minimal submanifold embedded in the sphere $ S^{n+1} $ is equal to $ n $. The proof uses the spectral properties of the heat kernel operator corresponding to the submanifold.



    加载中


    [1] I. Chavel, Eigenvalues in Riemannian geometry, Orlando: Academic Press, 1984.
    [2] M. A. Choudhary, First nonzero eigenvalue of a pseudo-umbilical hypersurface in the unit sphere, Russ. Math., 58 (2014), 56–64. https://doi.org/10.3103/S1066369X14080076 doi: 10.3103/S1066369X14080076
    [3] J. Cheeger, S. T. Yau, A lower bound for the heat kernel, Commun. Pur. Appl. Math., 34 (1981), 465–480. https://doi.org/10.1002/cpa.3160340404 doi: 10.1002/cpa.3160340404
    [4] L. F. Cheung, P. F. Leung, Eigenvalues estimates for submanifolds with bounded mean curvature in the hyperbolic space, Math. Z., 236 (2001), 525–530. https://doi.org/10.1007/PL00004840 doi: 10.1007/PL00004840
    [5] J. Choe, R. Gulliver, Isoperimetric inequalities on minimal submanifolds of space forms, Manuscripta Math., 77 (1992), 169–189. https://doi.org/10.1007/BF02567052 doi: 10.1007/BF02567052
    [6] S. Deshmukh, First nonzero eigenvalue of a minimal hypersurface in the unit sphere, Annali di Mathematica, 191 (2012), 529–537. https://doi.org/10.1007/s10231-011-0194-1 doi: 10.1007/s10231-011-0194-1
    [7] H. Federer, Geometric measure theory, Berlin Heidelberg: Springer-Verlag, 1996. https://doi.org/10.1007/978-3-642-62010-2
    [8] A. Grigor'yan, Heat kernel and analysis on manifolds, Washington: American Mathematical Society/International Press, 2009.
    [9] H. I. Choi, A. N. Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Differ. Geom., 18 (1983), 559–562.
    [10] M. Kotani, The first eigenvalue of homogeneous minimal hypersurfaces in a unit sphere $S^{n+1}(1)$, Tohoku Math. J., 37 (1985), 523–532. https://doi.org/10.2748/tmj/1178228592 doi: 10.2748/tmj/1178228592
    [11] P. Li, Large time behaviour of the heat equation on complete manifolds with non-negative Ricci curvature, Ann. Math., 124 (1986), 1–21. https://doi.org/10.2307/1971385 doi: 10.2307/1971385
    [12] H. Muto, Y. Ohnita, H. Urakawa, Homogeneous minimal hypersurfaces in a unit sphere and the first eigenvalue of the Laplacian, Tohoku Math. J., 36 (1984), 253–267. https://doi.org/10.2748/tmj/1178228851 doi: 10.2748/tmj/1178228851
    [13] B. Solomon, The harmonic analysis of cubic isoparametric minimal hypersurfaces Ⅰ: Dimensions 3 and 6, Am. J. Math., 112 (1990), 157–203. https://doi.org/10.2307/2374713 doi: 10.2307/2374713
    [14] B. Solomon, The harmonic analysis of cubic isoparametric minimal hypersurfaces Ⅱ: Dimensions 12 and 24, Am. J. Math., 112 (1990), 205–241. https://doi.org/10.2307/2374714 doi: 10.2307/2374714
    [15] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. https://doi.org/10.2969/jmsj/01840380 doi: 10.2969/jmsj/01840380
    [16] Z. Tang, W. Yan, Isoparametric foliation and Yau conjecture on the first eigenvalue, J. Differ. Geom., 94 (2013), 521–540.
    [17] S. T. Yau, Seminar on differential geometry, Princeton: Princeton University Press, 1982. https://doi.org/10.1515/9781400881918
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(920) PDF downloads(58) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog