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1. Introduction

In the theory of minimal submanifolds in a sphere, an interesting question asks about the value
of first nonzero eigenvalue of the Laplacian for a minimal hypersurface Σ embedded in (n + 2)-unit
sphere S n+1 in Rn+2. In its list of famous problems, the following question has been raised by S. T. Yau
(problem 100, [17]).
Conjecture: [17] Let Σ be a minimal hypersurface embedded in the n + 1-unit sphere S n+1. Then,
λ1(Σ) = n.

The upper bound λ1(Σ) ≤ n is not obvious, and was obtained before the statement of the conjecture
due to Takahashi [15]. Just after the conjecture was published, Choi and Wang proved that λ1(Σ) ≥ n/2.
In fact, they proved a more general statement based on Reilly’s formula, see [9]. Until this day, it
was the best known lower bound in the general case. Many important steps towards this conjecture
has been done by proving the conjecture for some minimal homogenous hypersurfaces due to Muto-
Ohnita-Urakawa [12], Kotani [10] and Solomon [13,14]. Recently, Z. Tang and W. Yan proved that the
conjecture is valid for closed minimal isoparametric hypersurfaces [16]. In a recent work, S Deshmukh
has proved some results related to the conjecture in [6]. For the case when λ1(Σ) < n, it is shown that
one has the following alternative, either λ1(Σ) ≤ (1 + k0)n or λ1(Σ) ≥ n + (nk0 − n + 1)

n
2

. In the
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opposite case, when λ1(Σ) = n, either Σ is isometric to the unit sphere S n or otherwise k0 ≤ n − 1/n.
A generalization of this work for pseudo-umbilical hypersurface in the unit sphere has been proved by
M. A. Choudhary in [2].

The method we are going to use in the paper are very different to the previous works, which have
studied in this topic. Indeed, we are going to focus on the spectral properties of the Laplacian of a
special type of immersed minimal submanifolds in the unit sphere. One of the most important objects
in spectral geometry is the heat kernel operator associated with a given Riemmanian manifold, which
corresponds to the solution of the heat equation on the manifold. The first nonzero eigenvalue controls
the rate of growth of the heat kernel when time tends to infinity.

1.1. The main result

Let Σ be the hypersurface given by the locus of vanishing of some smooth function ψ on the unit
sphere S n+1 i.e.,

Σ =
{
x ∈ S n+1 | ψ(x) = 0

}
.

We assume that Σ is embedded in S n+1, which amounts to say that the gradient of ψ never vanishes
on Σ. Thus, Σ is Riemannian submanifold on S n+1, in particular it has an induced metric which gives
rise to the corresponding Laplace-Beltrami operator ∆Σ which is also self-adjoint. The spectrum of
∆Σ which is discrete, has a least nonzero eigenvalue, λ1(Σ). Let us consider the polar coordinates
parametrization, (σ, θ) coming from the stereographic projection. Suppose ψ is chosen so that Σ is a
minimal embedded hypersurface in the n + 1-unit sphere S n+1. Then, one has the following positive
answer to the conjecture for minimal submanifolds satisfying some tranversality conditions.

Theorem 1.1. Let Σ a minimal embedded hypersurface in the n + 1-unit sphere S n+1 and assume that
the normal bundle of Σ is a one-dimensional subspace of T (S n+1) generated by the vector field ∂θ
coming from the stereographic projection. Then,

λ1(Σ) = n.

2. Useful facts

2.1. Spectral expansion of the Laplacian on Riemannian manifolds

We begin by some classical results that we are going to need. These can be found in many places
(see e.g., [1, 8]). Given an n-dimensional Riemannian manifold (M, g), one can define the Laplace-
Beltrami operator which acts on smooth functions over M. In the local coordinate around the point
x = (x1, . . . , xn) with associated frame (∂1, . . . , ∂n) which forms a basis of the tangent space Tx(M), the
Laplace-Beltrami operator takes the following form

∆M.g =
1
√

g

n∑
i=1

∂i(
√

g
n∑

j=1

gi j∂ j), (2.1)

where g = det(gi j) and (gi j) = (gi j)−1. Assuming that M is a compact makes the operator −∆M being a
self-adjoint operators in L2(M). In particular, it has a discrete spectrum given by

0 = λ0(M) < λ1(M) ≤ λ2(M) ≤ . . .
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The spectral decompositon of the Hilbert space L2(M) with respect to ∆M allows to write any
function f ∈ L2(M) as

f =
∑
k≥0

⟨ f ,Φk⟩L2(M)Φk,

where (Φk)k≥0 is a basis of eigenfunctions of L2(M). Associated to this, one can strongly continous
operator in L2(M), Pt = e−t∆M satisfying the property Ps+t = Ps ◦Pt such that ∥Pt∥ ≤ 1. It can be proved
see e.g., [3] that the operator Pt has a kernel Kt : M × M → R for all t ≥ 0. This means that, for any
function L2(M)

Pt f (x) =
∫

M
Kt(x, y) f (y)volg(dy).

The heat kernel characterizes the heat operator, and it can be obtained to perform the following
evaluation

Pt(δy)(x) = Kt(x, y).

The latter evaluation is allowed since one can identify the regular distribution with the function
whenever it is continous, which is the case for the kernel operator. In can be shown that the function
u(t, x) := Pt f (x) satisfies the following equation with initial Dirichlet boundary condition

∆Mu(t, x) +
∂

∂t
u(t, x) = 0,

u(0, x) = f (x) on ∂M.

(2.2)

The spectral decomposition of the heat kernel is given by

Kt(x, y) =
∑
k≥0

eλk(M)tΦk(x)Φk(y), (2.3)

for every x, y ∈ M. The exponential growth of Kt(x, y) is controlled by the first eigenvalue λ1(M), which
is nonzero for compact Riemannian manifolds with Dirichlet initial value condition. A fundamental
result for long time behavior of the heat kernel it that for every x, y ∈ M one has (see e.g., [11])

lim
t→∞

log Kt(x, y)
t

= λ1(M). (2.4)

The non-nullity of the first eigenvalue is granted by the fact that we consider the heat equation on
a bounded domain of the sphere with Dirichlet boundary conditions. In fact, we can say much more
about it since we are going to work with embedded closed minimal hypersurfaces in the unit sphere
S n+1. For this class of domains, the first eigenvalue is quite large in a certain sense, since it was proved
by Choi and Wang that λ1(M) ≥

n
2

[9]. In particular, the first eigenvalue is not zero.
Yau’s conjecture predicts that this value is maximal, in that λ1(M) = n for such hypersurfaces.

Thus, the minimality condition for an hypersurface on the unit sphere implies maximality of the first
eigenvalue.

For the sphere M = S n+1, the eigenvalues of the operator (−∆S n+1) acting on L2(S n+1) are given by

λl(S n+1) = l(n + l), (2.5)
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in particular the first eigenvalue is given by

λ1(S n+1) = n + 1. (2.6)

In particular, using 2.4 and 2.6 for the unit sphere one has asymptotic estimate as t tends to infinity

KS n+1

t (x, x) ∼ e−(n+1)tϕ1(x)2. (2.7)

2.2. Polar coordinates of the unit sphere

Let us consider the stereographic projection π of the sphere S n+1 on Rn+1 relatively to the north pole
N = en+2 = (0, . . . , 0, 1) ∈ S n+1. It is given by the rule

π(x) =
1

1 − xn+2
(x1, . . . , xn+1),

provided x = (x1, . . . , xn+2) is not N. Let us set σ(x) =
π(x)
∥π(x)∥

, this defines an element of S n. Also one

defines a map θ : S n+1 → [0, π] by assigning to each x ∈ S n+1, the angle θ(x) = 2
̂

(
−−→
NO,
−−→
Nx). One can

explicit a formula for θ, indeed one has

∥
−−→
NO∥∥

−−→
Nx∥ cos(

θ

2
) = ⟨
−−→
N0,
−−→
Nx⟩.

In terms of the coordinates x = (x1, . . . , xn+2) and
−−→
NO = −en+2 = (0, . . . ,−1), the previous equality

gives √
x2

1 + . . . + x2
n+1 + (xn+2 − 1)2 cos(

θ(x)
2

) = 1 − xn+2.

Thus,

θ(x) = 2 cos−1

 1 − xn+2√
x2

1 + . . . + x2
n+1 + (1 − xn+2)2

 ∈ [0, π).

We are able to product a diffeomorphism ψ : S n+1 − {N} → S n × [0, π] by setting

ψ(x) = (
π(x)
∥π(x)∥

, θ(x)).

This gives the well-known realization of the unit sphere S n+1 minus N as the product S n × [0, π]
with the polar coordinates x = (σ, θ).

By now on, we use the parametrization of the unit sphere minus the north pole using the change of
coordinates (x1, . . . , xn+1)↔ (σ1, . . . , σn+1) where σn+1 = θ. The length element is given by

dx2
|S n+1 = sin2 θdσ2

|S n + dθ2.

The metric g|S n+1 in the local coordinates (σ1, . . . , σn+1, θ) is given by the diagonal matrix

(g|S n+1)i j =


sin2 θ 0 . . . 0

0 . . .
...

... sin2 θ 0
0 . . . 0 1

 .
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The metric g|S n+1 gives rise to the Christoffel symbols given by

Γk
i j =

1
2

∑
1⩽l⩽n+2

gkl{∂ j(gil) + ∂i(g jl) − ∂l(gi j)} (1 ⩽ i, j, k ⩽ n + 1).

We can use this coefficients to define a connection on the tangent bundle of S n+1. Let x ∈ S n+1 − N
with local coordinates x = (σ1, . . . , σn, θ) and corresponding orthonormal frame {∂1, . . . , ∂n, ∂θ} with
respect to the metric g|S n+1 that is, for every i, j = 1, . . . , n + 1

g|S n+1(∂i, ∂ j) = δ
j
i .

Using the basis {∂1, . . . , ∂n, ∂θ} of Tx(S n+1) we are able to define a bilinear map

∇ = ∇S n+1
: T (S n+1) × T (S n+1)→ T (S n+1),

by assigning the values taken by this form at the elements of the basis of T (S n+1) by introducing the
coefficients,

∇∂i∂ j =

n+1∑
k=1

Γk
i j∂k,

where we have denoted ∂n+1 = ∂θ. The operator ∇ therefore defines a connection on the tangent bundle
T (S n−1). Basic computations show that the Christoffel symbols relative to the metric g are symmetric in
the sense Γk

i j = Γ
k
ji for all 1 ⩽ i, j, k ⩽ n+ 1. This implies that ∇ is torsion-free i.e., ∇XY −∇Y X = [X,Y]

and by uniqueness, ∇ is the Levi-Civita connection on T (S n+1).

2.3. The hypersurface Σ in S n+1 in the polar coordinate system

We consider the unit sphere equipped with the polar coordinates system (σ, θ) introduced in the
previous paragraph. Thus, the hypersurface Σ in the coordinate system (σ, θ) is defined as follows

Σ = {(σ1, . . . , σn, θ) ∈ S n × [0, π] | ψ(σ1, . . . , σn, θ) = 0} .

Since Σ is embedded in S n+1, the chain rule implies that gradient of ψ satisfies ∇ψ(x) , 0 for any
x ∈ Σ in the polar coordinates. The hypersurface Σ inherits a structure of Riemannian manifold given
by a metric gΣ which the one induced by g|S n+1 with associated volume Riemmanian form dvolΣ =
√

gΣ(σ, θ) dσ ∧ dθ which we do not need to explicit. In the local coordinates, we can assume that

{
∂

∂σ1
, . . . ,

∂

∂σn
} is an orthonormal frame of T (Σ) whereas ξ =

∂

∂θ
generates the normal bundle N(Σ).

The vector fields (
∂

∂σi
) are simply denoted ∂i for 1 ⩽ i ⩽ n and sometimes we will denote either

∂n+1 or ∂θ the vector field
∂

∂θ
. With these notations, we have the orthonormal frame for T (S n+1) =

{∂1, . . . , ∂n, ∂θ} which extends the tangent bundle T (Σ) = {∂1, . . . , ∂n}. The tangent space of T (S n+1)
can be splited as folllows:

T (S n+1) = T (Σ) ⊕ N(Σ).

Since Σ is a smooth hypersurface, namely of codimension one, N(Σ) is a line bundle over Σ which
is generated by the normal vector field ξ = ∂θ. One can give an explicit expression for ξ, the metric gΣ
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and the mean curvature of Σ in function of the derivatives of u with respect to the frame {∂1, . . . , ∂n},
but we will not need it. Instead, we will use the general expression of the mean curvature in terms
of the connections on Σ and S n+1. Let us denote ∇S n+1

(resp. ∇Σ) the Levi-Civita connection of S n+1

(resp. Σ) relative to the metric g and the induced metric g|Σ given in polar coordinates. The second
fundamental form IIΣ of Σ in S n+1 is defined by

∇S n+1

X Y = ∇ΣXY + IIΣ(X,Y),

for any two vectors fields in X,Y ∈ T (S n+1). In particular taking {∂1, . . . , ∂n} as an orthonormal basis
for T (Σ), the previous relation applied to X = Y = ∂i gives us

∇S n+1

∂i
∂i = ∇

Σ
∂i
∂i + IIΣ(∂i, ∂i).

Taking the sum we obtain the fundamental relation

n∑
i=1

∇S n+1

∂i
∂i =

n∑
i=1

∇Σ∂i
∂i + HΣ, (2.8)

where HΣ =
∑n

i=1 IIΣ(∂i, ∂i) is the mean curvature vector of Σ.

3. The proof of Theorem 1.1

By translating Σ using a rotation k ∈ SO(n + 1), one can sufficiently rotate the hypersurface Σ so
that N < Σ, that is, Σ ⊂ S n+1 − {N}. The hypothesis of Theorem 1.1 tells us that T (Σ) ⊥ ∂θ and Σ is the
graph of a smooth real valued function u : S n → [0, π],

Σ = {(σ, θ) ∈ S n × [0, π] : θ = u(σ)}. (3.1)

Since Σ is embedded in S n+1, the gradient of ψ does not vanish, the implicit function theorem shows
that

(σ, θ) ∈ Σ −C if and only if θ = u(σ), (3.2)

in the coordinates (σ, θ). In particular, for any x = (σ, θ) ∈ V∩Σ−C, one has ψ(σ, u(σ)) = 0 and at such
point x, the hypersurface Σ only depends on the coordinates σ1, . . . , σn. Thus, Tx(Σ) is a hyperplane
in Tx(S n+1) with orthonormal basis {∂1, . . . , ∂n}. This basis extends to a local frame {∂1, . . . , ∂n, ∂θ} of
Tx(S n+1) where ∂n = ∂θ. Thus, the normal direction is given by the line Nx(Σ) generated by ∂θ.

We give an explicit expression for the Laplacian of Σ in our setting which can also be found in [4,5].

Lemma 3.1. For every (σ, θ) 7→ f (σ, θ) smooth function on S n+1, one has

∆Σ f|Σ = (∆S n+1 f )|Σ − ∂
2
θ f .

Proof. The local orthonormal frame {∂1, . . . , ∂n} of Σ gives the following expression for the Laplacian
of Σ

∆Σ =

n∑
i=1

(∂2
i − ∇

Σ
∂i
∂i).
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By (2.8), one has
n∑

i=1

∇Σ∂i
∂i =

n∑
i=1

∇S n+1

∂i
∂i − HΣ.

Therefore,

∆Σ =

n∑
i=1

(∂2
i − ∇

S n+1

∂i
∂i) + HΣ.

Let us write,

∆Σ =

n+1∑
i=1

(∂2
i − ∇

S n+1

∂i
∂i) + HΣ − (∂2

∂ − ∇
S n+1

∂θ
∂θ).

The choice of the system of coordinates tells us that ∂n+1 = ∂θ. We claim that ∇S n+1

∂θ
∂θ = 0. Indeed

one has,

∇S n+1

∂θ
∂θ =

n+1∑
j=1

Γ
j
θθ∂ j,

where

Γ
j
θθ =

1
2

n∑
k=1

gk j{∂θ(gθk) + ∂θ(gθk) − ∂k(gθθ)}.

Since the inverse metric tensor (gS n+1)k j of S n+1 is diagonal with gθθ = 1 and gkk = 1/ sin2 θ for
k = 1, . . . , n. Thus one has, for all 1 ⩽ j ⩽ n + 1

Γ
j
θθ =

1
2

g j j{∂θ(gθ j) + ∂θ(gθ j) − ∂ j(gθθ)} = 0.

Hence, as expected one has
∇S n−1

∂θ
∂θ = 0.

Finally, one obtains the Laplace operator on the hypersurface Σ expressed in the local coordinates
(σ1, . . . , σn, θ) in S n+1

∆Σ = ∆S n+1 + HΣ − ∂2
θ . (3.3)

Since Σ is minimal (i.e., HΣ = 0), the previous equality gives us the expected decompostion of the
Laplacian

∆Σ = ∆S n+1 − ∂2
θ .

Now, let us restrict our attention to the spectrum of ∆Σ. The main task is to find an explicit form of
the heat kernel KΣt , (t > 0) of Σ. The previous lemma gives rise to the following relation between the
heat operators of Σ, S n+1 and [0, π]

PΣt = e−t∆Σ = e−t∆S n−1+t∂2
θ . (3.4)

The fact that the two operators ∆S n+1 and ∂2
θ commutes, i.e., [∆S n+1 , ∂2

θ] = 0 implies the following:

PΣt = e−t∆S n+1+t∂2
θ = e−t∆S n+1 et∂2

θ = PS n+1

t PS 1

t . (3.5)
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Note that we have denoted PS 1

t = et∂2
θ the heat operator acting on L2(0, π) in order to emphasis

with the fact that the operator ∂2
θ acts isopectrally either on L2(S 1) and L2(0, π) meaning that their

eigenvalues are the same, λl = −l2 for l = 0, 1, 2, . . . We arrive to the key lemma which gives a formula
of the heat kernel of the hypersurface Σ in the (σ, θ)-coordinates of the unit sphere S n+1.

Lemma 3.2. For any x = (τ, α) and (σ, θ) in Σ, one has

KΣt (x; (σ, θ)) = KS n+1

t (x; (σ, θ))
(∫ π

β=0
KS 1

t (θ, β)dβ
)
.

Proof. Let us denote by (KS n+1

t )t>0 (resp. (KS n+1

t )t>0) the heat kernel of PS n+1

t (resp. PS 1

t ).
Let us consider f ∈ L2(S n+1) with support in Σ, then the factorization (3.5) yields

PΣt f (x) =
∫

(σ,θ)∈Σ
KS n+1

t (x; (σ, θ)) (PS 1

t f )(σ, θ) dvolΣ(σ, θ).

Therefore,

PΣt f (x) =
∫

(σ,θ)∈Σ
KS n+1

t (x; (σ, θ))
(∫ π

β=0
KS 1

t (θ, β) f (σ, β)dβ
)

dvolΣ(σ, θ).

Sard’s Theorem [7] tells us that volΣ(C) = 0, in other words, one can restrict the integral to Σ −C

PΣt f (x) =
∫

(σ,θ)∈Σ−C
KS n+1

t (x; (σ, θ))
(∫ π

β=0
KS 1

t (θ, β) f (σ, β)dβ
)

dvolΣ(σ, θ).

Using the implicit function u as in (3.2), locally, (σ, θ) ∈ Σ −C means that u(σ) = θ or equivalently
σ ∈ u−1(θ). In other words, (σ, θ) ∈ Σ implies that for every β ∈ [0, π]

f (σ, β) = f (σ, θ).

The latter fact comes from the fact u is a function, in that, it takes an unique value at each element
of S n.

In particular, provided (σ, θ) ∈ Σ −C we infer that∫ π

β=0
KS 1

t (θ, β) f (σ, β)dβ =
(∫ π

β=0
KS 1

t (θ, β)dβ
)

f (σ, θ).

Therefore, we obtain the following form of the heat operator on Σ

PΣt f (x) =
∫

(σ,θ)∈Σ−C
KS n+1

t (x; (σ, θ))
(∫ π

β=0
KS 1

t (θ, β)dβ
)

f (σ, θ)dvolΣ(σ, θ).

Hence, using duality, we obtain the heat kernel for the hypersurface Σ

KΣt (x; (σ, θ)) = KS n+1

t (x; (σ, θ))
(∫ π

β=0
KS 1

t (θ, β)dβ
)
. (3.6)

The lemma is proved.
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We are ready to prove the theorem, using Lemma 3.2 we get

lim
t→0+

log KΣt (x; (σ, θ))
t

= lim
t→0+

log KS n+1

t (x; (σ, θ))
t

+ lim
t→0+

1
t

log
(∫ π

β=0
KS 1

t (θ, β)dβ
)
,

for every x = (τ, α) and (σ, θ) in Σ. In view of (2.4), we obtain the equality

λ1(Σ) = λ1(S n+1) + lim
t→0+

1
t

log
(∫ π

β=0
KS 1

t (θ, β)dβ
)
. (3.7)

The spectral expansion of ∂2
θ with respect to the orthonormal eigenfunctions in L2(0, π) given by

(Φk(x))n≥1 = (
1
√

2π
sin(kx))k≥1 is given by the uniformly convergent series

KS 1

t (θ, β) =
2
π

∑
k≥1

e−k2t sin(kθ) sin(kβ).

Therefore, using Fubini-Tonelli we can write∫ π

β=0
KS 1

t (θ, β) dβ =
2
π

∑
k≥1

e−k2t sin(kθ)
∫ π

β=0
sin(kβ)dβ.

Since
∫ π

β=0
sin(kβ)dβ = 1

k (1 − (−1)k), we get∫ π

β=0
KS 1

t (θ, β) dβ =
2
π

∑
m≥0

e−(2m+1)2t sin((2m + 1)θ)
2m + 1

.

The long time asymptotic behaviour of the previous series is controlled by its first term, namely
m = 0. Thus, we obtain the estimate as t → ∞,∫ π

β=0
KS 1

t (θ, β) dβ ∼
2
π

e−t sin θ.

Note that since θ ∈ (0, π), sin(θ) > 0 we are allowed to take the logarithm in order to get

lim
t→0+

1
t

log
(∫ π

β=0
KS 1

t (θ, β)dβ
)
= −1.

Thus, (3.7) gives the equality
λ1(Σ) = λ1(S n+1) − 1. (3.8)

The fact that λ1(S n+1) = n + 1 gives the required and finishes the proof of Theorem 1.1.
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