In this article, we find the different sufficient conditions for a compact minimal hypersurface $ M $ of the unit sphere $ S^{n+1}, n\in \mathbb{Z}^{+} $ to be the Clifford hypersurface $ S^{\ell }(\sqrt{\frac{\ell }{n}})\times S^{m}(\sqrt{\frac{m}{n}}), $ where $ \ell, m\in \mathbb{Z}^{+}, \; \ell +m = n $ or the sphere $ S^{n} $. This classification is achieved by applying constraints to the tangent and normal components of the immersion.
Citation: Ibrahim Al-dayel. Investigating the characteristics of Clifford hypersurfaces and the unit sphere via a minimal immersion in $ S^{n+1} $[J]. AIMS Mathematics, 2024, 9(10): 26951-26960. doi: 10.3934/math.20241311
In this article, we find the different sufficient conditions for a compact minimal hypersurface $ M $ of the unit sphere $ S^{n+1}, n\in \mathbb{Z}^{+} $ to be the Clifford hypersurface $ S^{\ell }(\sqrt{\frac{\ell }{n}})\times S^{m}(\sqrt{\frac{m}{n}}), $ where $ \ell, m\in \mathbb{Z}^{+}, \; \ell +m = n $ or the sphere $ S^{n} $. This classification is achieved by applying constraints to the tangent and normal components of the immersion.
[1] | I. Al-Dayel, S. Deshmukh, O. Belova, A remarkable property of concircular vector fields on a Riemannian manifold, Mathematics, 8 (2020), 469. http://dx.doi.org/10.3390/math8040469 doi: 10.3390/math8040469 |
[2] | S. Chern, M. do Carmo, S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, In: Functional analysis and related fields, Berlin: Springer, 1970, 59–75. http://dx.doi.org/10.1007/978-3-642-48272-4_2 |
[3] | J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), 62–105. http://dx.doi.org/10.2307/1970556 doi: 10.2307/1970556 |
[4] | S. Deshmukh, Characterizing spheres and Euclidean spaces by conformal vector fields, Ann. Mat., 196 (2017), 2135–2145. http://dx.doi.org/10.1007/s10231-017-0657-0 doi: 10.1007/s10231-017-0657-0 |
[5] | S. Deshmukh, A note on hypersurfaces in a sphere, Monatsh. Math., 174 (2014), 413–426. http://dx.doi.org/10.1007/s00605-013-0549-3 doi: 10.1007/s00605-013-0549-3 |
[6] | S. Deshmukh, A note on compact hypersurfaces in a Euclidean space, CR Math., 350 (2012), 971–974. http://dx.doi.org/10.1016/j.crma.2012.10.027 doi: 10.1016/j.crma.2012.10.027 |
[7] | S. Deshmukh, I. Al-Dayel, A not on minimal hypersurface of an odd dimensional sphere, Mathematics, 8 (2020), 294. http://dx.doi.org/10.3390/math8020294 doi: 10.3390/math8020294 |
[8] | S. Deshmukh, I. Al-Dayel, Characterizing spheres by an immersion in Euclidean spaces, Arab Journal of Mathematical Sciences, 23 (2017), 85–93. http://dx.doi.org/10.1016/j.ajmsc.2016.09.002 doi: 10.1016/j.ajmsc.2016.09.002 |
[9] | S. Deshmukh, I. Al-Dayel, Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature, J. Geom. Anal., 15 (2005), 589–606. http://dx.doi.org/10.1007/BF02922246 doi: 10.1007/BF02922246 |
[10] | H. Li, A characterization of Clifford minimal hypersurfaces in $S^4$, Proc. Amer. Math. Soc., 123 (1995), 3183–3187. http://dx.doi.org/10.1090/S0002-9939-1995-1277113-6 doi: 10.1090/S0002-9939-1995-1277113-6 |
[11] | F. Klein, Zur nicht-euklidischen Geometrie, Math. Ann., 37 (1890), 544–572. http://dx.doi.org/10.1007/BF01724772 doi: 10.1007/BF01724772 |
[12] | Q. Wang, Rigidity of Clifford minimal hypersurfaces, Monatsh. Math., 140 (2003), 163–167. http://dx.doi.org/10.1007/s00605-002-0039-5 doi: 10.1007/s00605-002-0039-5 |