[g]¯G | 1A | 2A | 2B | 2C |
χ1 | 1 | 1 | 1 | 1 |
χ38 | a | a | a | -a |
χ38+t2 | 30b | 30b | -2b | 0 |
χ38+t2+t3 | 32c | -32c | 0 | 0 |
Citation: Abraham Love Prins. Computing the conjugacy classes and character table of a non-split extension 26·(25:S6) from a split extension 26:(25:S6)[J]. AIMS Mathematics, 2020, 5(3): 2113-2125. doi: 10.3934/math.2020140
[1] | Zongbing Lin, Kaimin Cheng . A note on consecutive integers of the form 2x + y2. AIMS Mathematics, 2020, 5(5): 4453-4458. doi: 10.3934/math.2020285 |
[2] | Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403 |
[3] | Yasin Ünlütürk, Talat Körpınar, Muradiye Çimdiker . On k-type pseudo null slant helices due to the Bishop frame in Minkowski 3-space E13. AIMS Mathematics, 2020, 5(1): 286-299. doi: 10.3934/math.2020019 |
[4] | Choonkil Park, XiaoYing Wu . Homomorphism-derivation functional inequalities in C*-algebras. AIMS Mathematics, 2020, 5(5): 4482-4493. doi: 10.3934/math.2020288 |
[5] | Sara Pouyandeh, Amirhossein Morovati Moez, Ali Zeydi Abdian . The spectral determinations of connected multicone graphs Kw ▽ mCP(n). AIMS Mathematics, 2019, 4(5): 1348-1356. doi: 10.3934/math.2019.5.1348 |
[6] | Wenjia Guo, Xiaoge Liu, Tianping Zhang . Dirichlet characters of the rational polynomials. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194 |
[7] | Motohiro Sobajima, Kentarou Yoshii . Lp-analysis of one-dimensional repulsive Hamiltonian with a class of perturbations. AIMS Mathematics, 2018, 3(1): 21-34. doi: 10.3934/Math.2018.1.21 |
[8] | Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang . On the construction, properties and Hausdorff dimension of random Cantor one pth set. AIMS Mathematics, 2020, 5(4): 3138-3155. doi: 10.3934/math.2020202 |
[9] | Özgür Boyacıoğlu Kalkan . On normal curves and their characterizations in Lorentzian n-space. AIMS Mathematics, 2020, 5(4): 3510-3524. doi: 10.3934/math.2020228 |
[10] | Muhammad Sheraz, Vasile Preda, Silvia Dedu . Non-extensive minimal entropy martingale measures and semi-Markov regime switching interest rate modeling. AIMS Mathematics, 2020, 5(1): 300-310. doi: 10.3934/math.2020020 |
In the papers [2] and [16], the character tables of the non-split extension ¯G3=26⋅Sp6(2) and split extension 26:Sp6(2) were successfully computed by the method of Fischer-Clifford matrices [8]. In the ATLAS [6] we found that NFi22(26)≅26:Sp6(2) is a maximal subetaoup of the smallest Fischer sporadic simple group Fi22 of index 694980. Here the elementary abelian group 26 is a pure 2B-group, where 2B denotes a class of involutions in Fi22. Dempwolff in [7] proved that a unique non-split extension (up to isomorphism) of the form ¯Gn=22n⋅Sp2n(2) does exist for all n≥2, where ¯Gn/22n≅Sp2n(2) acts faithfully on 22n. In [2] it was noted that 26:Sp6(2) and ¯G3 give rise to the same character table. The groups 26:Sp6(2) and ¯G3 have subetaoups of types M1=26:(25:S6) and ¯G=26⋅(25:S6), where M1 and ¯G are pre-images of a maximal subetaoup 25:S6 of index 63 in Sp6(2), under the natural epimorphism modulo 26.
In this paper, it will be shown that the character tables of M1 and ¯G coincide and how the conjugacy classes of ¯G can be obtained from the classes of M1 by "restricting" characters of ¯G3 (see Section 5 of this paper) to characters of M1. In this regard, the format of the character tables of M1 and ¯G3 (see [2] and [13]) which were obtained by the method of Fischer-Clifford matrices, plays an important role. The power maps of ¯G and the fusion map of ¯G into ¯G3 are also computed. Most of our computations are done in the computer algebra systems MAGMA [5] and GAP [21]. For concepts and definitions used in this paper, the readers are referred to the review paper on Fischer-Clifford theory [3] and [1,11,12,17,18,19].
Since the ordinary character tables of the groups 26:Sp6(2), ¯G3, M1 and ¯G have been computed by the technique of Fischer-Clifford matrices, a brief theoretical background of this technique will be given in this section. In Section 4, it will be shown that only the ordinary irreducible characters of the inertia factors will be used in the construction of the character table of ¯G. Therefore, only the case where every irreducible character of N can be extended to its inertia group in the extension group N.G will be discussed. Here the author will follow closely the work of the authors in [16].
Let ¯G=N.G be an extension of N by G and θ∈Irr(N), where Irr(N) denotes the irreducible characters of N. Define θg by θg(n)=θ(gng−1) for g∈¯G, n∈N and θg∈Irr(N). Let ¯H={x∈¯G|θx=θ}=I¯G(θ) be the inertia group of θ in ¯G. We say that θ is extendible to ¯H if there exists ϕ∈Irr(¯H) such that ϕ↓N=θ. If θ is extendible to ¯H, then by Gallagher [11], we have
{γ|γ∈Irr(¯H),<γ↓N,θ>≠0}={βϕ|β∈Irr(¯H/N)}. |
Let ¯G have the property that every irreducible character of N can be extended to its inertia group. Now let θ1=1N,θ2,⋯,θt be representatives of the orbits of ¯G on Irr(N), ¯Hi=I¯G(ϕi), 1≤i≤t, ϕi∈Irr(¯Hi) be an extension of θi to ¯Hi and β∈Irr(¯Hi) such that N⊆ker(β). Then
Irr(¯G)=t⋃i=1{(βϕi)¯G|β∈Irr(¯Hi),N⊆ker(β)}=t⋃i=1{(βϕi)¯G|β∈Irr(¯Hi/N)} |
Hence the irreducible characters of ¯G will be divided into blocks, where each block corresponds to an inertia group ¯Hi.
Let Hi be the inertia factor group and ϕi be an extension of θi to ¯Hi. Take θ1=1N as the identity character of N, then ¯H1=¯G and H1≅G. Let X(g)={x1,x2,⋯,xc(g)} be a set of representatives of the conjugacy classes of ¯G from the coset N¯g whose images under the natural homomorphism ¯G⟶G are in the class [g] of G and we take x1=ˉg. We define
R(g)={(i,yk)|1≤i≤t,Hi∩[g]≠∅,1≤k≤r}, |
where yk runs over representatives of the conjugacy classes of elements of Hi which fuse into [g]. Let {ylk} be the representatives of conjugacy classes of ¯Hi which contain liftings of yk under the natural homomorphism ¯Hi⟶Hi. Then we define the Fischer-Clifford matrix M(g) by M(g)=(aj(i,yk)), where
aj(i,yk)=′∑l|C¯G(xj)||C¯Hi(ylk)|ϕi(ylk), |
with columns indexed by X(g) and rows indexed by R(g) and where ∑′l is the summation over all l for which ylk∼xj in ¯G. Then the partial character table of ¯G on the classes {x1,x2,⋯,xc(g)} is given by [C1(g)M1(g)C2(g)M2(g)⋮Ct(g)Mt(g)] where the Fischer-Clifford matrix M(g)=[M1(g)M2(g)⋮Mt(g)] is divided into blocks Mi(g) with each block corresponding to an inertia group ¯Hi and Ci(g) is the partial character table of Hi consisting of the columns corresponding to the classes that fuse into [g]. Hence the full character table of ¯G will be [Δ1Δ2⋮Δt], where Δi = [Ci(1)Mi(1)|Ci(g2)Mi(g2)|...|Ci(gk)Mi(gk)] with {1,g1,g2,...,gk} the representatives of conjugacy classes of G. We can also observe that |Irr(¯G)| = |Irr(H1)| + |Irr(H2)| +...+ |Irr(Ht)|.
The group ¯G3=26⋅Sp6(2) was constructed in [2] as a permutation group on 128 points and it was shown that ¯G3 has an inertia group ¯G=26⋅(25:S6) which belongs to a non-split extension of a reducible module of dimension 6 over GF(2) for the maximal subetaoup 25:S6 of Sp6(2). Using the generators of ¯G3 given in [2], the group ¯G is constructed as the centralizer C¯G3(2A) of the class of involutions 2A within ¯G3.
Let ¯G=26⋅(25:S6) be the non-split extension of N=26 by G=25:S6. The group 25:S6 is the stabilizer of a vector in the action of Sp6(2) on its natural 6-dimensional module 26. This action is the same in both the split and non-split extensions 26:Sp6(2) and ¯G3. This immediately defines the action of 25:S6 on the module 26. Note that the action of the split extension M1=26:(25:S6) on 26 is the same as the action of 25:S6 on 26. The group G can be constructed as a matrix group of dimension 6 over the finite field GF(2) within Sp6(2). Now with the action of G on N=26, where we view N as the vector space of dimension six over GF(2), we will obtain four orbits of lengths 1, 1, 30 and 32 with corresponding point stabilizers G, G, 24:S5 and S6, respectively. By Brauer's Theorem [10] the action of G on Irr(N) will also produce 4 orbits and since the action is self-dual, the orbit lengths will be 1,1,30 and 32 with corresponding inertia factor groups H1=H2=G, H3=24:S5 and H4=S6.
Having obtained the inertia factors H1=H2=G, H3=24:S5 and H4=S6 for the action of G on Irr(N), we can formed the Fischer-Clifford matrix M(1A) corresponding to the identity coset N1¯G=N as follows:
M(1A)=2304023040768720147456014745604915246080(1111111−13030−2032−3200) 1 1 3032 |
The column weights above the matrix M(1A) are the centralizer orders |C¯G(¯g)| of the classes 1A,2A,2B and 2C of ¯G (see Table 5) coming from the identity coset N(¯1A)=N by means of the technique of coset-analysis (see [14], [15] and [16]). Whereas, the row weights to the left of the matrix M(1A) represent the centralizer orders |CHi(1A)| of the inertia factors Hi on the identity element 1A.
Table 1 is the partial ordinary character table of ¯G on the classes 1A,2A,2B and 2C of ¯G, where each of the 4 lines of Table 1 corresponds to the first row of entries of the sub-matrices Ci(1A)Mi(1A),i=1,2,3,4. Mi(1A) and Ci(1A) correspond to the rows of the Fischer-Clifford matrix M(1A) and columns of the projective character tables of the inertia factors Hi, respectively, which are associated with the classes [1A]Hi of the inertia factors Hi which fuse into the class [1A]G of G. Also, note that the character values in the 1st column of Table 1 are the degrees of the ordinary irreducible characters χ1,χ38,χ38+t2 and χ38+t2+t3 of ¯G. The characters χ1,χ38,χ38+t2 and χ38+t2+t3 occupy the first position for each block of characters coming from an inertia subetaoup ¯Hi of ¯G, where 37,t2 and t3 represent the number |IrrProj(Hi,αi)| of irreducible projective characters with associated factor set αi for the inertia factors H1,H2 and H3, respectively. Now deg(η1)=1,deg(ϕ1)=a,deg(ψ1)=b and deg(γ1)=c are the degrees of the irreducible projective characters 1G, ϕ1, ψ1 and γ1 which occupy the first position in each set IrrProj(Hi,αi), i=1,2,...,4, respectively.
[g]¯G | 1A | 2A | 2B | 2C |
χ1 | 1 | 1 | 1 | 1 |
χ38 | a | a | a | -a |
χ38+t2 | 30b | 30b | -2b | 0 |
χ38+t2+t3 | 32c | -32c | 0 | 0 |
We copy a small part of the ordinary character table of 26⋅Sp6(2) (see Table 11.12 in [4]), containing the values of the character 63a on the classes 1A,2A:
[g]¯G31A2A63a63−1 |
Now the classes 1A,2A,2B and 2C of ¯G consist of the elements of N (see Table 5). If we decompose (63a)N into the the set Irr(N) and also notice that <(63a)N,1N> = 0, then (63a)N=a(χ38)N+b(χ38+t2)N+c(χ38+t2+t3)N, where a,b and c are defined as above. If we take into account the fusion of the classes 1A,2A,2B and 2C of ¯G into the classes of 1A and 2A of ¯G3, and the decomposition of (63a)N into the set Irr(N), then the following set of equations (by restricting the character values of 63a to Table 1) is obtained:
1. (63a)N(1A)=a+30b+32c=63
2. (63a)N(2A)=a+30b−32c=−1
3. (63a)N(2B)=a−2b=−1
4. (63a)N(2C)=−a=−1
Solving the above equations simultaneously, we obtain that a=b=1=c=1 and hence deg(ϕ1)=deg(ψ1)=deg(γ1)=1. We can conclude that only the ordinary irreducible characters tables of the inertia factors Hi will be involved in the construction of the ordinary character table of 26⋅(25:S6). This means that the ordinary irreducible characters of the split extension M1=26:(25:S6) (Table 9.7 in [13]) are the same as the ones for the non-split extension ¯G, but the class orders of the two groups will differ as it will be shown in Section 5.
In this section, we will compute the order of an element ¯g in a conjugacy class [¯g]¯G of ¯G from the conjugacy classes and ordinary irreducible characters of both M1 and ¯G3. For both ¯G and M1, the centralizer orders for each class of elements coming from a corresponding coset N¯g, g∈25:S6, will be the same, but their class orders may be different. The method of coset-analysis was used to compute the conjugacy classes of elements of 26:(25:S6) (see Table 5) and ¯G3 (Table 1 in [2]). Let ¯G=N.G be an extension of N by G, where N is abelian. Then for g∈G, we write ¯g for a lifting of g in ¯G under the natural homomorphism ¯G⟶G. We consider a coset N¯g for each class representative g of G, writing k for number of orbits of N acting by conjugation on the coset N¯g, and fj for the numbers of these fused by the action of {¯h:h∈CG(g)}. Note if ¯G is a split extension then ¯g becomes g. The order of the centralizer C¯G(x) for each element x∈¯G in a conjugacy class [x]¯G is given by |C¯G(x)|=k|CG(g)|fj.
For example, let consider the classes of M1=26:(25:S6) obtained from the cosets N(2A) and N(2E) (see Table 3), where 2A and 2E are classes of involutions in 25:S6. In addition, we consider also the partial character table of M1 corresponding to the cosets N(2A) and N(2E) (see [13]), which was computed by the technique of Fischer-Clifford matrices. We obtained also from [13] that (ϕ1=63a)26:(25:S6) = χ38+χ75+χ127, (ϕ2=63b)26:(25:S6) = χ39+χ76+χ128, (ϕ3=315a)26:(25:S6) = χ43+χ86+χ94+χ132 and (ϕ4=315b)26:(25:S6) = χ40+χ75+χ80+χ94+χ130, where ϕ1, ϕ2, ϕ3 and ϕ4 are ordinary irreducible characters of 26:Sp6(2) of degrees 63 and 315 which are restricted to irreducible characters of M1 by the technique of set intersection (see [9,14,16]).
From Table 4 we notice that classes 2A and 2E of 25:S6 are fusing into the class 2A of Sp6(2). Hence the classes of ¯G, which will be obtained from the cosets N(¯2A) and N(¯2E) using coset analysis, will fuse into the classes of ¯G3 lying above the class 2A of Sp6(2). Since the character tables of ¯G and M1 coincide, the corresponding cosets N(¯2A) and N(¯2E) for both of the groups will produce the same number of classes and share the same class centralizer orders and partial character tables. Also ¯G3 and 26:Sp6(2) share the same character table and therefore we can expect that the irreducible character χ32 of degree 63 of ¯G3 (see Table 2) will restrict to the same irreducible characters as above-mentioned character ϕ2=63b.
[g]Sp6(2) | 1A | 2A | |||
[g]26⋅Sp6(2) | 1A | 2A | 4A | 4B | 2B |
χ32 | 63 | -1 | -29 | 3 | -1 |
[g]25:S6 | 1A | 2A | 2E | ||||||||||
[g]26:(25:S6) | 1A | 2A | 2B | 2C | 2D | 2E | 4A | 2L | 2M | 2N | 2O | 4I | 4J |
χ39 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 |
χ76 | 30 | 30 | -2 | 0 | -30 | 2 | 0 | -12 | -12 | 4 | 2 | -2 | 0 |
χ128 | 32 | -32 | 0 | 0 | 0 | 0 | 0 | -16 | 16 | 0 | 0 | 0 | 0 |
χ39+χ76+χ128 | 63 | -1 | -1 | -1 | -29 | 3 | -1 | -29 | 3 | 3 | 3 | -1 | -1 |
[h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) |
1A1A | 2J2D | 4G4E | 6E6B |
2A2A | 3A3A | 4H4E | 6F6D |
2B2B | 3B3C | 4I4B | 6G6G |
2C2C | 4A4B | 4J4C | 6H6F |
2D2C | 4B4C | 5A5A | 8A8A |
2E2A | 4C4D | 6A6B | 8B8B |
2F2B | 4D4A | 6B6A | 10A10A |
2G2D | 4E4D | 6C6D | 12A12A |
2H2D | 4F4E | 6D6E | 12B12B |
2I2C |
Suppose that Table 3 is the partial character table of ¯G corresponding to the cosets N, N(¯2A) and N(¯2E) and irreducible characters of degrees 1, 30 and 32. Now the ordinary character χ32 of ¯G3 in Table 2 will restrict to the sum of the irreducible characters χ39, χ76 and χ128 of ¯G in Table 3. If the character values of χ32 on the classes 4A, 4B and 2B coming from the coset N(¯2A) in Table 2 and the character values of the restricted character (χ32)¯G=χ39+χ76+χ128 on the classes 2D,2E,4A,2L,2M,2N,2O,4I and 4J coming from the cosets N(¯2A) and N(¯2E) in Table 3 are taking into consideration, then the class orders of 2D,2E,2L,2M,2N and 2O are forced to change from order 2 to order 4 whereas the class orders of 4A,4I and 4J are forced to change from order 4 to order 2. Hence we obtained the classes of ¯G, with their respective class orders and centralizer orders (see Table 5), associated with the cosets N(¯2A) and N(¯2E). In a similar fashion, we obtained all the classes of ¯G, with their class and centralizer orders, using the above restricted characters ϕ1, ϕ2, ϕ3 and ϕ4 together with the ordinary character tables of ¯G3 and M1. See Table 5 where all the information concerning the conjugacy classes of M1 and ¯G are listed. For the explanation of the parameters used in Table 5 the readers are referred to [16] and [20].
[g]25:S6 | k | fj | dj | w | [¯g]M1 | [¯g]¯G | |CM1(¯g)| and |C¯G(¯g)| |
1A | 64 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 1A | 1A | 1474560 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 2A | 2A | 1474560 | ||
f3=30 | (0,1,0,0,0,0) | (0,1,0,0,0,0) | 2B | 2B | 49152 | ||
f4=32 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 2C | 2C | 46080 | ||
2A | 32 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2D | 4A | 737280 |
f2=15 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 2E | 4B | 49152 | ||
f3=16 | (1,0,0,0,0,0) | (1,0,1,0,0,0) | 4A | 2D | 46080 | ||
2B | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2F | 2E | 24576 |
f2=3 | (1,1,1,1,1,0) | (0,0,0,0,0,0) | 2G | 2F | 8192 | ||
f3=4 | (0,0,0,1,1,1) | (1,0,1,0,0,1) | 4B | 4C | 6144 | ||
f4=8 | (1,0,0,0,0,0) | (0,1,0,0,1,0) | 4C | 4D | 3072 | ||
2C | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2H | 4E | 24576 |
f2=3 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 2I | 4F | 8192 | ||
f3=4 | (1,1,0,0,1,1) | (1,0,1,0,0,1) | 4D | 2G | 6144 | ||
f4=8 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 4E | 4G | 3072 | ||
2D | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2J | 4H | 12288 |
f2=3 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 2K | 4I | 4096 | ||
f3=4 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 4F | 4J | 3072 | ||
f4=4 | (1,1,1,1,0,0) | (1,1,0,0,0,1) | 4G | 4K | 3072 | ||
f5=4 | (1,0,1,0,1,0) | (1,0,1,0,0,1) | 4H | 2H | 3072 | ||
2E | 32 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2L | 4L | 24576 |
f2=1 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 2M | 4M | 24576 | ||
f3=6 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 2N | 4N | 4096 | ||
f4=8 | (1,1,0,0,1,1) | (0,1,1,0,0,0) | 2O | 4O | 3072 | ||
f5=8 | (0,1,0,0,1,1) | (0,1,1,0,0,0) | 4I | 2I | 3072 | ||
f6=8 | (0,1,0,0,0,1) | (0,0,0,0,0,0) | 4J | 2J | 3072 | ||
2F | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2P | 2K | 6144 |
f2=1 | (1,1,1,1,1,0) | (0,0,0,0,0,0) | 2Q | 2L | 6144 | ||
f3=2 | (1,1,1,1,0,1) | (0,0,0,0,0,0) | 2R | 2M | 3072 | ||
f4=6 | (1,1,1,1,1,1) | (0,0,0,1,0,1) | 4K | 4P | 1024 | ||
f5=6 | (0,1,1,1,1,1) | (1,1,1,0,1,1) | 4L | 4Q | 1024 | ||
2G | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2S | 4R | 3072 |
f2=1 | (1,0,0,1,1,1) | (1,0,1,0,0,1) | 4M | 2N | 3072 | ||
f3=3 | (1,1,1,1,1,1) | (1,1,1,1,1,0) | 4N | 4S | 1024 | ||
f4=3 | (1,1,1,1,0,0) | (1,0,1,1,0,0) | 4O | 4T | 1024 | ||
2H | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2T | 4U | 1024 |
f2=1 | (1,1,1,0,1,1) | (1,0,0,0,0,1) | 4P | 4V | 1024 | ||
f3=1 | (1,1,1,1,0,0) | (1,1,0,0,0,1) | 4Q | 4W | 1024 | ||
f4=1 | (1,1,1,1,1,0) | (1,0,1,0,0,1) | 4R | 2O | 1024 | ||
f5=2 | (1,1,1,1,1,1) | (1,0,0,0,0,1) | 4S | 4X | 512 | ||
f6=2 | (1,1,1,1,0,1) | (1,1,1,0,0,1) | 4T | 4Y | 512 | ||
2I | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2U | 4Z | 2048 |
f2=1 | (0,1,1,1,0,1) | (0,0,0,0,0,0) | 2V | 4AA | 2048 | ||
f3=2 | (0,1,1,1,1,1) | (1,0,1,1,1,0) | 4U | 2P | 1024 | ||
f4=2 | (1,1,1,1,1,1) | (1,0,1,1,1,0) | 2W | 4AB | 1024 | ||
f5=2 | (1,1,1,1,0,1) | (0,0,0,0,0,0) | 4V | 2Q | 1024 | ||
f6=4 | (1,1,1,1,0,0) | (1,1,0,1,0,0) | 4W | 4AC | 512 | ||
f7=4 | (1,0,1,1,1,1) | (1,1,0,1,0,0) | 4X | 4AD | 512 | ||
2J | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2X | 4AE | 1024 |
f2=1 | (1,1,1,1,0,1) | (1,0,1,0,0,1) | 4Y | 4AF | 1024 | ||
f3=1 | (1,1,1,0,0,1) | (1,0,1,1,1,0) | 4Z | 2R | 1024 | ||
f4=1 | (1,1,1,1,1,1) | (0,0,0,1,1,1) | 4AA | 4AG | 1024 | ||
f5=2 | (1,1,1,1,1,0) | (0,1,1,0,1,0) | 4AB | 4AH | 512 | ||
f6=2 | (1,1,0,1,1,1) | (1,1,0,0,1,1) | 4AC | 4AI | 512 | ||
3A | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3A | 3A | 2304 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 6A | 6A | 2304 | ||
f3=6 | (0,0,0,1,0,0) | (0,0,0,0,1,1) | 6B | 6B | 384 | ||
f4=8 | (0,0,0,0,0,1) | (0,0,0,0,0,1) | 6C | 6C | 288 | ||
3B | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3B | 3B | 144 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 6D | 6D | 144 | ||
f3=2 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 6E | 6E | 72 | ||
4A | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AD | 8A | 1536 |
f2=3 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 4AE | 8B | 512 | ||
f3=4 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8A | 4AJ | 384 | ||
4B | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AF | 8C | 1536 |
f2=3 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 4AG | 8D | 512 | ||
f3=4 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 8B | 4AK | 384 | ||
4C | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AH | 4AL | 512 |
f2=1 | (1,0,0,1,0,0) | (0,0,0,0,0,0) | 4AI | 4AM | 512 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 4AJ | 4AN | 256 | ||
4D | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AK | 4AO | 512 |
f2=1 | (1,0,0,1,0,0) | (0,0,0,0,0,0) | 4AL | 4AP | 512 | ||
f3=2 | (0,0,1,0,0,1) | (0,0,0,0,0,0) | 4AM | 4AQ | 256 | ||
4E | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4A | 4AR | 256 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 4AO | 4AS | 256 | ||
f3=1 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 4AP | 4AT | 256 | ||
f4=1 | (1,0,0,0,1,0) | (0,0,0,0,0,0) | 4AQ | 4AU | 256 | ||
4F | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AR | 8E | 128 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8C | 4AV | 128 | ||
f3=1 | (0,1,0,0,0,0) | (1,0,1,1,1,0) | 8D | 4AW | 128 | ||
f4=1 | (1,1,0,0,0,0) | (1,0,1,1,1,0) | 4AS | 8F | 128 | ||
4G | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AT | 8G | 128 |
f2=1 | (0,0,0,1,1,0) | (1,0,1,0,0,1) | 8E | 4AX | 128 | ||
f3=1 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 4AU | 8H | 128 | ||
f4=1 | (1,1,0,1,1,1) | (1,0,1,0,0,1) | 8F | 4AY | 128 | ||
4H | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AV | 8I | 128 |
f2=1 | (1,0,0,0,1,0) | (1,0,1,0,1,1) | 4AW | 8J | 128 | ||
f3=1 | (0,1,0,0,0,1) | (0,0,0,0,0,0) | 8G | 4AZ | 128 | ||
f4=1 | (1,1,0,0,1,1) | (1,0,1,0,1,1) | 8H | 4BA | 128 | ||
4I | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AX | 8K | 256 |
f2=1 | (1,0,1,0,0,1) | (0,0,0,0,0,0) | 4AY | 8L | 256 | ||
f3=2 | (1,0,0,0,1,0) | (1,0,1,0,1,1) | 4AZ | 8M | 128 | ||
f4=2 | (1,1,0,0,0,0) | (0,0,0,0,0,0) | 8I | 4BB | 128 | ||
f5=2 | (1,1,0,0,1,1) | (0,0,1,0,0,0) | 8J | 4BC | 128 | ||
4J | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4BA | 8N | 256 |
f2=1 | (1,0,1,1,1,0) | (0,0,0,0,0,0) | 4BB | 8O | 256 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,1,1,1) | 4BC | 8P | 128 | ||
f4=2 | (1,1,1,1,0,0,1) | (0,0,0,1,1,1) | 8K | 4BD | 128 | ||
f5=2 | (1,1,0,0,1,1) | (0,0,0,0,0,0) | 8L | 4BE | 128 | ||
5A | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 5A | 5A | 40 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 10A | 10A | 40 | ||
f3=2 | (1,0,0,0,0,0) | (1,1,0,0,0,0) | 10B | 10B | 20 | ||
6A | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6F | 12A | 1152 |
f2=3 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 6G | 12B | 384 | ||
f3=4 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 12A | 6F | 288 | ||
6B | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6H | 6G | 192 |
f2=1 | (1,0,1,0,1,1) | (1,0,1,0,0,1) | 12B | 12C | 192 | ||
f3=2 | (1,0,1,1,0,1) | (0,1,1,0,0,0) | 12C | 12D | 96 | ||
6C | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6I | 12E | 192 |
f2=1 | (1,0,1,0,1,1) | (1,0,1,0,0,1) | 12D | 6H | 192 | ||
f3=2 | (1,0,1,1,1,1) | (0,1,1,0,1,0) | 12E | 12F | 96 | ||
6D | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6J | 12G | 72 |
f2=1 | (0,0,1,0,0,1) | (0,0,1,0,0,1) | 12F | 6I | 72 | ||
6E | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6K | 12H | 192 |
f2=1 | (1,0,1,0,0,1) | (0,0,0,0,0,0) | 6L | 12I | 192 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 6M | 12J | 96 | ||
f4=2 | (1,0,1,0,1,1) | (0,1,1,0,0,0) | 12G | 6J | 96 | ||
f5=2 | (1,0,0,0,1,0) | (0,1,1,0,0,0) | 12H | 6K | 96 | ||
6F | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6N | 12K | 96 |
f2=1 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 12I | 6L | 96 | ||
f3=1 | (1,0,1,0,1,1) | (1,1,0,0,0,1) | 12J | 12L | 96 | ||
f4=1 | (1,0,0,0,1,0) | (1,0,1,0,0,1) | 12K | 12M | 96 | ||
6G | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6O | 12N | 24 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 12L | 6M | 24 | ||
6H | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6P | 6N | 48 |
f2=1 | (1,1,1,0,1,1) | (0,0,0,0,0,0) | 6Q | 6O | 48 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 6R | 6P | 24 | ||
8A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 8M | 8Q | 32 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8N | 8R | 32 | ||
8B | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 8O | 8S | 32 |
f2=1 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 8P | 8T | 32 | ||
10A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 10C | 20A | 20 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 20A | 10C | 20 | ||
12A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 12M | 24A | 48 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 24A | 12O | 48 | ||
12B | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 12N | 24B | 48 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 24B | 12P | 48 |
By restricting some ordinary characters of ¯G3 to ¯G and also computing the structure constants (using GAP) for the set Irr(¯G), we ensure that the consistency checks of Programme E [22] for the set Irr(¯G) are satisfied. The information about the conjugacy classes found in Table 5 can be used to compute the power maps for the elements of ¯G and Programme E is used to confirm that the character table of ¯G produces the unique p-powers listed in Table 6.
[g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 |
1A | 1A | 2A | 4A | 2A | 4F | 8E | 4F | 4G | 8G | 4AA | |||||||||
2A | 1A | 4B | 2A | 4AV | 2G | 4AX | 2Q | ||||||||||||
2B | 1A | 2D | 1A | 4AW | 2G | 8H | 4Z | ||||||||||||
2C | 1A | 8F | 4E | 4AY | 2Q | ||||||||||||||
2B | 2E | 1A | 2C | 4E | 2A | 4H | 8I | 4AA | 4I | 8K | 4Z | ||||||||
2F | 1A | 4F | 2A | 8J | 4Z | 8L | 4Z | ||||||||||||
4C | 2A | 2G | 1A | 4AZ | 2Q | 8M | 4Z | ||||||||||||
4D | 2B | 4G | 2B | 4BA | 2Q | 4BB | 2Q | ||||||||||||
4BC | 2Q | ||||||||||||||||||
2D | 4H | 2B | 2E | 4L | 2B | 4J | 8N | 4Z | 5A | 5A | 1A | ||||||||
4I | 2B | 4M | 2B | 8O | 4Z | 10A | 5A | 2A | |||||||||||
4J | 2B | 4N | 2B | 8P | 4Z | 10B | 5A | 2C | |||||||||||
4K | 2A | 4O | 2B | 4BD | 2Q | ||||||||||||||
2H | 1A | 2I | 1A | 4BE | 2Q | ||||||||||||||
2J | 1A | ||||||||||||||||||
2F | 2K | 1A | 2G | 4R | 2A | 6A | 12A | 6A | 4A | 6B | 6G | 3A | 2E | ||||||
2L | 1A | 2N | 1A | 12B | 6A | 4B | 12C | 6A | 4C | ||||||||||
2M | 1A | 4S | 2B | 6F | 3A | 2D | 12D | 6B | 4D | ||||||||||
4P | 2B | 4T | 2B | ||||||||||||||||
4Q | 2B | ||||||||||||||||||
2H | 4U | 2B | 2I | 4Z | 2B | 6C | 12E | 6A | 4E | 6D | 12G | 6D | 4A | ||||||
4V | 2B | 4AA | 2B | 6H | 3A | 2G | 6I | 3B | 2D | ||||||||||
4W | 2A | 2P | 1A | 12F | 6B | 4G | |||||||||||||
2O | 1A | 4AB | 2B | ||||||||||||||||
4X | 2B | 2Q | 1A | ||||||||||||||||
4Y | 2B | 4AC | 2B | ||||||||||||||||
4AD | 2B | ||||||||||||||||||
2J | 4AE | 2B | 3A | 3A | 1A | 6E | 12H | 6B | 4L | 6F | 12K | 6B | 4H | ||||||
4AF | 2A | 6A | 3A | 2A | 12I | 6B | 4M | 6L | 3A | 2H | |||||||||
2R | 1A | 6B | 3A | 2B | 12J | 6B | 4O | 12L | 6B | 4J | |||||||||
4AG | 2B | 6C | 3A | 2C | 6J | 3A | 2I | 12M | 6A | 4K | |||||||||
4AH | 2B | 6K | 3A | 2J | |||||||||||||||
4AI | 2B | ||||||||||||||||||
3B | 3B | 1A | 4A | 8A | 4E | 6G | 12N | 6D | 4R | 6H | 6N | 3B | 2K | ||||||
6D | 3B | 2A | 8B | 4E | 6M | 3B | 2N | 6O | 3B | 2L | |||||||||
6E | 3B | 2C | 4AJ | 2G | 6P | 3B | 2M | ||||||||||||
4B | 8C | 4E | 4C | 4AL | 2E | 8A | 8Q | 4AL | 8B | 8S | 4AO | ||||||||
8D | 4E | 4AM | 2F | 8R | 4AM | 8T | 4AP | ||||||||||||
4AK | 2G | 4AN | 2F | ||||||||||||||||
4D | 4AO | 2E | 4E | 4AR | 2E | 10A | 20A | 10A | 4A | 12A | 24A | 12E | 8A | ||||||
4AP | 2F | 4AS | 2F | 10C | 5A | 2D | 12O | 6H | 4AJ | ||||||||||
4AQ | 2F | 4AT | 2F | ||||||||||||||||
4AU | 2F | ||||||||||||||||||
12B | 24B | 12E | 8C | ||||||||||||||||
12P | 6H | 4AK |
By making use of the values of ϕ1, ϕ2, ϕ3 and ϕ4 on the classes of 26⋅Sp6(2), the values of (ϕ1)26⋅(25⋅S6), (ϕ2)26⋅(25:S6)), (ϕ3)26⋅(25:S6) and (ϕ4)26⋅(25:S6) on the classes of 26⋅(25:S6), Table 4 and the permutation character χ(26⋅Sp6(2)|26⋅(25:S6)) = 1a+27a+35a of degree 63 of 26⋅Sp6(2) acting on 26⋅(25:S6), the complete fusion map of 26⋅(25:S6) into 26⋅Sp6(2) is computed and is given in Table 7.
[g](25:S6) | [x]26⋅(25:S6) ⟶ | [y]26⋅Sp6(2) | [g](25:S6) | [x]26⋅(25:S6) ⟶ | [y]26⋅Sp6(2) |
1A | 1A | 1A | 2A | 4A | 4A |
2A | 2A | 4B | 4B | ||
2B | 2A | 2D | 2B | ||
2C | 2A | ||||
2B | 2E | 2C | 2C | 4E | 4D |
2F | 2D | 4F | 4E | ||
4C | 4C | 2G | 2E | ||
4D | 4C | 4G | 4F | ||
2D | 4H | 4D | 2E | 4L | 4A |
4I | 4E | 4M | 4B | ||
4J | 4E | 4N | 4B | ||
4K | 4F | 4O | 4B | ||
2H | 2E | 2I | 2B | ||
2J | 2B | ||||
2F | 2K | 2C | 2G | 4R | 4G |
2L | 2D | 2N | 2F | ||
2M | 2D | 4S | 4H | ||
4P | 4C | 4T | 4I | ||
4Q | 4C | ||||
2H | 4U | 4G | 2I | 4Z | 4D |
4V | 4H | 4AA | 4E | ||
4W | 4I | 2P | 2E | ||
2O | 2F | 4AB | 4E | ||
4X | 4H | 2Q | 2E | ||
4Y | 4I | 4AC | 4F | ||
4AD | 4F | ||||
2J | 4AE | 4G | 3A | 3A | 3A |
4AF | 4H | 6A | 6A | ||
2R | 2F | 6B | 6A | ||
4AG | 4I | 6C | 6A | ||
4AH | 4I | ||||
4AI | 4H | ||||
3B | 3B | 3C | 4A | 8A | 8A |
6D | 6B | 8B | 8B | ||
6E | 6B | 4AJ | 4L | ||
4B | 8C | 8C | 4C | 4AL | 4N |
8D | 8D | 4AM | 4O | ||
4AK | 4M | 4AN | 4P | ||
4D | 4AO | 4J | 4E | 4AR | 4N |
4AP | 4K | 4AS | 4O | ||
4AQ | 4K | 4AT | 4P | ||
4AU | 4P | ||||
4F | 8E | 8E | 4G | 8G | 8E |
4AV | 4R | 4AX | 4R | ||
4AW | 4Q | 8H | 8F | ||
8F | 8F | 4AY | 4Q | ||
4H | 8I | 8E | 4I | 8K | 8A |
8J | 8F | 8L | 8B | ||
4AZ | 4Q | 8M | 8B | ||
4BA | 4R | 4BB | 4L | ||
4BC | 4L | ||||
4J | 8N | 8C | 5A | 5A | 5A |
8O | 8D | 10A | 10A | ||
8P | 8D | 10B | 10A | ||
4BD | 4M | ||||
4BE | 4M | ||||
6A | 12A | 12A | 6B | 6G | 6D |
12B | 12B | 12C | 12C | ||
6F | 6C | 12D | 12C | ||
6C | 12E | 12D | 6D | 12G | 12F |
6H | 6F | 6I | 6G | ||
12F | 12R | ||||
6E | 12H | 12A | 6F | 12K | 12D |
12I | 12B | 6L | 6F | ||
12J | 12B | 12L | 12E | ||
6J | 6C | 12M | 12E | ||
6K | 6C | ||||
6G | 12N | 12G | 6H | 6N | 6H |
6M | 6J | 6O | 6I | ||
6P | 6I | ||||
8A | 8Q | 8G | 8B | 8S | 8I |
8R | 8H | 8T | 8J | ||
10A | 20A | 20A | 12A | 24A | 24A |
10C | 10B | 12O | 12H | ||
12B | 24B | 24B | |||
12P | 12I |
The Department of Mathematics and Physics at Cape Peninsula University of Technology is acknowledge for the time and space provided for the author to complete the research article. I am most grateful to my Lord Jesus Christ.
The author declares that there is no conflict of interest regarding the publication of this paper.
[1] |
F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi'24, Representation Theory of the American Mathematical Society, 7 (2003), 300-321. doi: 10.1090/S1088-4165-03-00175-4
![]() |
[2] | A. B. M. Basheer and J. Moori,On the non-split extension group 26·Sp6(2), B. Iran. Math. Soc., 39 (2013), 1189-1212. |
[3] | A. B. M. Basheer and J. Moori, A survey on Clifford-Fischer theory, London Mathematical Society Lecture Notes Series, 422 (2015), 160-172. |
[4] | A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012. |
[5] | W. Bosma and J. J. Canon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994. |
[6] | J. H. Conway, R. T. Curtis, S. P. Norton, et al. Atlas of Finite Groups, Oxford University Press, Oxford, 1985. |
[7] | U. Dempwolff, Extensions of elementary abelian groups of order 22n byS 2n(2) and the degree 2-cohomology of S2n(2), Illinois J. Math., 18 (1974), 451-468 |
[8] | B. Fischer, Clifford-matrices, Representation Theory of Finite Groups and Finite-Dimensional Algebras, Birkhauser, Basel, 1991. |
[9] | R. L. Fray and A. L. Prins, On the inertia groups of the maximal subgroup 27:SP(6, 2) in Aut(Fi22), Quaest. Math., 38 (2015), 83-102. |
[10] | D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968. |
[11] | G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, North-Holland Mathematics Studies, 175 (1992), 1-13. |
[12] | A. L. Prins and R. L. Monaledi, Fischer-Clifford Matrices and Character Table of the Maximal Subgroup of (29:L3(4)):2 of U6(2):2, International Journal of Mathematics and Mathematical Sciences, 2019 (2019), 1-17. |
[13] | R. L. Monaledi, Character Tables of Some Selected Groups of Extension Type Using FischerClifford Matrices, M.Sc Thesis, University of the Western Cape, Bellville, 2015. |
[14] | J. Moori, On certain groups associated with the smallest Fischer group, J. Lond. Math. Soc., 2 (1981), 61-67. |
[15] | J. Moori, On the Groups G+ and ¯G of the forms 210:M22 and 210:¯M22, PhD thesis, University of Birmingham, 1975. |
[16] | J. Moori and Z. E. Mpono, The Fischer-Clifford matrices of the group 26:SP6(2), Quaest. Math., 22 (1999), 257-298 |
[17] | J. Moori and T. T. Seretlo, On 2 non-split extensions groups associated with HS and HS:2, Turkish J. Math., 38 (2014), 60-78. |
[18] | J. Moori and T. T. Seretlo, On Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly, B. Iran. Math. Soc., 39 (2013), 1037-1052. |
[19] | A. L. Prins, The character table of an involution centralizer in the Dempwolff group 25·GL5(2), Quaest. Math., 39 (2016), 561-576. |
[20] | A. L. Prins and R. L. Fray, The Fischer-Clifford matrices of an extension group of the form 27:(25:S6), Int. J. Group Theory, 3 (2014), 21-39. |
[21] |
The GAP Group, GAP--Groups, Algorithms, and Programming, Version 4.6.3, 2013. Available from: http://www.gap-system.org. |
[22] | T. T. Seretlo, Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups O+10(2), HS and Ly, PhD Thesis, University of KwaZulu Natal, 2011. |
1. | Abraham Love Prins, On the Fischer matrices of a group of shape 21+2n + :G, 2023, 56, 2357-4100, 189, 10.15446/recolma.v56n2.108379 |
[g]¯G | 1A | 2A | 2B | 2C |
χ1 | 1 | 1 | 1 | 1 |
χ38 | a | a | a | -a |
χ38+t2 | 30b | 30b | -2b | 0 |
χ38+t2+t3 | 32c | -32c | 0 | 0 |
[g]Sp6(2) | 1A | 2A | |||
[g]26⋅Sp6(2) | 1A | 2A | 4A | 4B | 2B |
χ32 | 63 | -1 | -29 | 3 | -1 |
[g]25:S6 | 1A | 2A | 2E | ||||||||||
[g]26:(25:S6) | 1A | 2A | 2B | 2C | 2D | 2E | 4A | 2L | 2M | 2N | 2O | 4I | 4J |
χ39 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 |
χ76 | 30 | 30 | -2 | 0 | -30 | 2 | 0 | -12 | -12 | 4 | 2 | -2 | 0 |
χ128 | 32 | -32 | 0 | 0 | 0 | 0 | 0 | -16 | 16 | 0 | 0 | 0 | 0 |
χ39+χ76+χ128 | 63 | -1 | -1 | -1 | -29 | 3 | -1 | -29 | 3 | 3 | 3 | -1 | -1 |
[h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) |
1A1A | 2J2D | 4G4E | 6E6B |
2A2A | 3A3A | 4H4E | 6F6D |
2B2B | 3B3C | 4I4B | 6G6G |
2C2C | 4A4B | 4J4C | 6H6F |
2D2C | 4B4C | 5A5A | 8A8A |
2E2A | 4C4D | 6A6B | 8B8B |
2F2B | 4D4A | 6B6A | 10A10A |
2G2D | 4E4D | 6C6D | 12A12A |
2H2D | 4F4E | 6D6E | 12B12B |
2I2C |
[g]25:S6 | k | fj | dj | w | [¯g]M1 | [¯g]¯G | |CM1(¯g)| and |C¯G(¯g)| |
1A | 64 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 1A | 1A | 1474560 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 2A | 2A | 1474560 | ||
f3=30 | (0,1,0,0,0,0) | (0,1,0,0,0,0) | 2B | 2B | 49152 | ||
f4=32 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 2C | 2C | 46080 | ||
2A | 32 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2D | 4A | 737280 |
f2=15 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 2E | 4B | 49152 | ||
f3=16 | (1,0,0,0,0,0) | (1,0,1,0,0,0) | 4A | 2D | 46080 | ||
2B | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2F | 2E | 24576 |
f2=3 | (1,1,1,1,1,0) | (0,0,0,0,0,0) | 2G | 2F | 8192 | ||
f3=4 | (0,0,0,1,1,1) | (1,0,1,0,0,1) | 4B | 4C | 6144 | ||
f4=8 | (1,0,0,0,0,0) | (0,1,0,0,1,0) | 4C | 4D | 3072 | ||
2C | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2H | 4E | 24576 |
f2=3 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 2I | 4F | 8192 | ||
f3=4 | (1,1,0,0,1,1) | (1,0,1,0,0,1) | 4D | 2G | 6144 | ||
f4=8 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 4E | 4G | 3072 | ||
2D | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2J | 4H | 12288 |
f2=3 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 2K | 4I | 4096 | ||
f3=4 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 4F | 4J | 3072 | ||
f4=4 | (1,1,1,1,0,0) | (1,1,0,0,0,1) | 4G | 4K | 3072 | ||
f5=4 | (1,0,1,0,1,0) | (1,0,1,0,0,1) | 4H | 2H | 3072 | ||
2E | 32 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2L | 4L | 24576 |
f2=1 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 2M | 4M | 24576 | ||
f3=6 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 2N | 4N | 4096 | ||
f4=8 | (1,1,0,0,1,1) | (0,1,1,0,0,0) | 2O | 4O | 3072 | ||
f5=8 | (0,1,0,0,1,1) | (0,1,1,0,0,0) | 4I | 2I | 3072 | ||
f6=8 | (0,1,0,0,0,1) | (0,0,0,0,0,0) | 4J | 2J | 3072 | ||
2F | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2P | 2K | 6144 |
f2=1 | (1,1,1,1,1,0) | (0,0,0,0,0,0) | 2Q | 2L | 6144 | ||
f3=2 | (1,1,1,1,0,1) | (0,0,0,0,0,0) | 2R | 2M | 3072 | ||
f4=6 | (1,1,1,1,1,1) | (0,0,0,1,0,1) | 4K | 4P | 1024 | ||
f5=6 | (0,1,1,1,1,1) | (1,1,1,0,1,1) | 4L | 4Q | 1024 | ||
2G | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2S | 4R | 3072 |
f2=1 | (1,0,0,1,1,1) | (1,0,1,0,0,1) | 4M | 2N | 3072 | ||
f3=3 | (1,1,1,1,1,1) | (1,1,1,1,1,0) | 4N | 4S | 1024 | ||
f4=3 | (1,1,1,1,0,0) | (1,0,1,1,0,0) | 4O | 4T | 1024 | ||
2H | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2T | 4U | 1024 |
f2=1 | (1,1,1,0,1,1) | (1,0,0,0,0,1) | 4P | 4V | 1024 | ||
f3=1 | (1,1,1,1,0,0) | (1,1,0,0,0,1) | 4Q | 4W | 1024 | ||
f4=1 | (1,1,1,1,1,0) | (1,0,1,0,0,1) | 4R | 2O | 1024 | ||
f5=2 | (1,1,1,1,1,1) | (1,0,0,0,0,1) | 4S | 4X | 512 | ||
f6=2 | (1,1,1,1,0,1) | (1,1,1,0,0,1) | 4T | 4Y | 512 | ||
2I | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2U | 4Z | 2048 |
f2=1 | (0,1,1,1,0,1) | (0,0,0,0,0,0) | 2V | 4AA | 2048 | ||
f3=2 | (0,1,1,1,1,1) | (1,0,1,1,1,0) | 4U | 2P | 1024 | ||
f4=2 | (1,1,1,1,1,1) | (1,0,1,1,1,0) | 2W | 4AB | 1024 | ||
f5=2 | (1,1,1,1,0,1) | (0,0,0,0,0,0) | 4V | 2Q | 1024 | ||
f6=4 | (1,1,1,1,0,0) | (1,1,0,1,0,0) | 4W | 4AC | 512 | ||
f7=4 | (1,0,1,1,1,1) | (1,1,0,1,0,0) | 4X | 4AD | 512 | ||
2J | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2X | 4AE | 1024 |
f2=1 | (1,1,1,1,0,1) | (1,0,1,0,0,1) | 4Y | 4AF | 1024 | ||
f3=1 | (1,1,1,0,0,1) | (1,0,1,1,1,0) | 4Z | 2R | 1024 | ||
f4=1 | (1,1,1,1,1,1) | (0,0,0,1,1,1) | 4AA | 4AG | 1024 | ||
f5=2 | (1,1,1,1,1,0) | (0,1,1,0,1,0) | 4AB | 4AH | 512 | ||
f6=2 | (1,1,0,1,1,1) | (1,1,0,0,1,1) | 4AC | 4AI | 512 | ||
3A | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3A | 3A | 2304 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 6A | 6A | 2304 | ||
f3=6 | (0,0,0,1,0,0) | (0,0,0,0,1,1) | 6B | 6B | 384 | ||
f4=8 | (0,0,0,0,0,1) | (0,0,0,0,0,1) | 6C | 6C | 288 | ||
3B | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3B | 3B | 144 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 6D | 6D | 144 | ||
f3=2 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 6E | 6E | 72 | ||
4A | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AD | 8A | 1536 |
f2=3 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 4AE | 8B | 512 | ||
f3=4 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8A | 4AJ | 384 | ||
4B | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AF | 8C | 1536 |
f2=3 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 4AG | 8D | 512 | ||
f3=4 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 8B | 4AK | 384 | ||
4C | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AH | 4AL | 512 |
f2=1 | (1,0,0,1,0,0) | (0,0,0,0,0,0) | 4AI | 4AM | 512 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 4AJ | 4AN | 256 | ||
4D | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AK | 4AO | 512 |
f2=1 | (1,0,0,1,0,0) | (0,0,0,0,0,0) | 4AL | 4AP | 512 | ||
f3=2 | (0,0,1,0,0,1) | (0,0,0,0,0,0) | 4AM | 4AQ | 256 | ||
4E | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4A | 4AR | 256 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 4AO | 4AS | 256 | ||
f3=1 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 4AP | 4AT | 256 | ||
f4=1 | (1,0,0,0,1,0) | (0,0,0,0,0,0) | 4AQ | 4AU | 256 | ||
4F | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AR | 8E | 128 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8C | 4AV | 128 | ||
f3=1 | (0,1,0,0,0,0) | (1,0,1,1,1,0) | 8D | 4AW | 128 | ||
f4=1 | (1,1,0,0,0,0) | (1,0,1,1,1,0) | 4AS | 8F | 128 | ||
4G | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AT | 8G | 128 |
f2=1 | (0,0,0,1,1,0) | (1,0,1,0,0,1) | 8E | 4AX | 128 | ||
f3=1 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 4AU | 8H | 128 | ||
f4=1 | (1,1,0,1,1,1) | (1,0,1,0,0,1) | 8F | 4AY | 128 | ||
4H | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AV | 8I | 128 |
f2=1 | (1,0,0,0,1,0) | (1,0,1,0,1,1) | 4AW | 8J | 128 | ||
f3=1 | (0,1,0,0,0,1) | (0,0,0,0,0,0) | 8G | 4AZ | 128 | ||
f4=1 | (1,1,0,0,1,1) | (1,0,1,0,1,1) | 8H | 4BA | 128 | ||
4I | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AX | 8K | 256 |
f2=1 | (1,0,1,0,0,1) | (0,0,0,0,0,0) | 4AY | 8L | 256 | ||
f3=2 | (1,0,0,0,1,0) | (1,0,1,0,1,1) | 4AZ | 8M | 128 | ||
f4=2 | (1,1,0,0,0,0) | (0,0,0,0,0,0) | 8I | 4BB | 128 | ||
f5=2 | (1,1,0,0,1,1) | (0,0,1,0,0,0) | 8J | 4BC | 128 | ||
4J | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4BA | 8N | 256 |
f2=1 | (1,0,1,1,1,0) | (0,0,0,0,0,0) | 4BB | 8O | 256 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,1,1,1) | 4BC | 8P | 128 | ||
f4=2 | (1,1,1,1,0,0,1) | (0,0,0,1,1,1) | 8K | 4BD | 128 | ||
f5=2 | (1,1,0,0,1,1) | (0,0,0,0,0,0) | 8L | 4BE | 128 | ||
5A | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 5A | 5A | 40 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 10A | 10A | 40 | ||
f3=2 | (1,0,0,0,0,0) | (1,1,0,0,0,0) | 10B | 10B | 20 | ||
6A | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6F | 12A | 1152 |
f2=3 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 6G | 12B | 384 | ||
f3=4 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 12A | 6F | 288 | ||
6B | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6H | 6G | 192 |
f2=1 | (1,0,1,0,1,1) | (1,0,1,0,0,1) | 12B | 12C | 192 | ||
f3=2 | (1,0,1,1,0,1) | (0,1,1,0,0,0) | 12C | 12D | 96 | ||
6C | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6I | 12E | 192 |
f2=1 | (1,0,1,0,1,1) | (1,0,1,0,0,1) | 12D | 6H | 192 | ||
f3=2 | (1,0,1,1,1,1) | (0,1,1,0,1,0) | 12E | 12F | 96 | ||
6D | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6J | 12G | 72 |
f2=1 | (0,0,1,0,0,1) | (0,0,1,0,0,1) | 12F | 6I | 72 | ||
6E | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6K | 12H | 192 |
f2=1 | (1,0,1,0,0,1) | (0,0,0,0,0,0) | 6L | 12I | 192 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 6M | 12J | 96 | ||
f4=2 | (1,0,1,0,1,1) | (0,1,1,0,0,0) | 12G | 6J | 96 | ||
f5=2 | (1,0,0,0,1,0) | (0,1,1,0,0,0) | 12H | 6K | 96 | ||
6F | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6N | 12K | 96 |
f2=1 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 12I | 6L | 96 | ||
f3=1 | (1,0,1,0,1,1) | (1,1,0,0,0,1) | 12J | 12L | 96 | ||
f4=1 | (1,0,0,0,1,0) | (1,0,1,0,0,1) | 12K | 12M | 96 | ||
6G | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6O | 12N | 24 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 12L | 6M | 24 | ||
6H | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6P | 6N | 48 |
f2=1 | (1,1,1,0,1,1) | (0,0,0,0,0,0) | 6Q | 6O | 48 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 6R | 6P | 24 | ||
8A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 8M | 8Q | 32 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8N | 8R | 32 | ||
8B | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 8O | 8S | 32 |
f2=1 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 8P | 8T | 32 | ||
10A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 10C | 20A | 20 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 20A | 10C | 20 | ||
12A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 12M | 24A | 48 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 24A | 12O | 48 | ||
12B | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 12N | 24B | 48 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 24B | 12P | 48 |
[g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 |
1A | 1A | 2A | 4A | 2A | 4F | 8E | 4F | 4G | 8G | 4AA | |||||||||
2A | 1A | 4B | 2A | 4AV | 2G | 4AX | 2Q | ||||||||||||
2B | 1A | 2D | 1A | 4AW | 2G | 8H | 4Z | ||||||||||||
2C | 1A | 8F | 4E | 4AY | 2Q | ||||||||||||||
2B | 2E | 1A | 2C | 4E | 2A | 4H | 8I | 4AA | 4I | 8K | 4Z | ||||||||
2F | 1A | 4F | 2A | 8J | 4Z | 8L | 4Z | ||||||||||||
4C | 2A | 2G | 1A | 4AZ | 2Q | 8M | 4Z | ||||||||||||
4D | 2B | 4G | 2B | 4BA | 2Q | 4BB | 2Q | ||||||||||||
4BC | 2Q | ||||||||||||||||||
2D | 4H | 2B | 2E | 4L | 2B | 4J | 8N | 4Z | 5A | 5A | 1A | ||||||||
4I | 2B | 4M | 2B | 8O | 4Z | 10A | 5A | 2A | |||||||||||
4J | 2B | 4N | 2B | 8P | 4Z | 10B | 5A | 2C | |||||||||||
4K | 2A | 4O | 2B | 4BD | 2Q | ||||||||||||||
2H | 1A | 2I | 1A | 4BE | 2Q | ||||||||||||||
2J | 1A | ||||||||||||||||||
2F | 2K | 1A | 2G | 4R | 2A | 6A | 12A | 6A | 4A | 6B | 6G | 3A | 2E | ||||||
2L | 1A | 2N | 1A | 12B | 6A | 4B | 12C | 6A | 4C | ||||||||||
2M | 1A | 4S | 2B | 6F | 3A | 2D | 12D | 6B | 4D | ||||||||||
4P | 2B | 4T | 2B | ||||||||||||||||
4Q | 2B | ||||||||||||||||||
2H | 4U | 2B | 2I | 4Z | 2B | 6C | 12E | 6A | 4E | 6D | 12G | 6D | 4A | ||||||
4V | 2B | 4AA | 2B | 6H | 3A | 2G | 6I | 3B | 2D | ||||||||||
4W | 2A | 2P | 1A | 12F | 6B | 4G | |||||||||||||
2O | 1A | 4AB | 2B | ||||||||||||||||
4X | 2B | 2Q | 1A | ||||||||||||||||
4Y | 2B | 4AC | 2B | ||||||||||||||||
4AD | 2B | ||||||||||||||||||
2J | 4AE | 2B | 3A | 3A | 1A | 6E | 12H | 6B | 4L | 6F | 12K | 6B | 4H | ||||||
4AF | 2A | 6A | 3A | 2A | 12I | 6B | 4M | 6L | 3A | 2H | |||||||||
2R | 1A | 6B | 3A | 2B | 12J | 6B | 4O | 12L | 6B | 4J | |||||||||
4AG | 2B | 6C | 3A | 2C | 6J | 3A | 2I | 12M | 6A | 4K | |||||||||
4AH | 2B | 6K | 3A | 2J | |||||||||||||||
4AI | 2B | ||||||||||||||||||
3B | 3B | 1A | 4A | 8A | 4E | 6G | 12N | 6D | 4R | 6H | 6N | 3B | 2K | ||||||
6D | 3B | 2A | 8B | 4E | 6M | 3B | 2N | 6O | 3B | 2L | |||||||||
6E | 3B | 2C | 4AJ | 2G | 6P | 3B | 2M | ||||||||||||
4B | 8C | 4E | 4C | 4AL | 2E | 8A | 8Q | 4AL | 8B | 8S | 4AO | ||||||||
8D | 4E | 4AM | 2F | 8R | 4AM | 8T | 4AP | ||||||||||||
4AK | 2G | 4AN | 2F | ||||||||||||||||
4D | 4AO | 2E | 4E | 4AR | 2E | 10A | 20A | 10A | 4A | 12A | 24A | 12E | 8A | ||||||
4AP | 2F | 4AS | 2F | 10C | 5A | 2D | 12O | 6H | 4AJ | ||||||||||
4AQ | 2F | 4AT | 2F | ||||||||||||||||
4AU | 2F | ||||||||||||||||||
12B | 24B | 12E | 8C | ||||||||||||||||
12P | 6H | 4AK |
[g](25:S6) | [x]26⋅(25:S6) ⟶ | [y]26⋅Sp6(2) | [g](25:S6) | [x]26⋅(25:S6) ⟶ | [y]26⋅Sp6(2) |
1A | 1A | 1A | 2A | 4A | 4A |
2A | 2A | 4B | 4B | ||
2B | 2A | 2D | 2B | ||
2C | 2A | ||||
2B | 2E | 2C | 2C | 4E | 4D |
2F | 2D | 4F | 4E | ||
4C | 4C | 2G | 2E | ||
4D | 4C | 4G | 4F | ||
2D | 4H | 4D | 2E | 4L | 4A |
4I | 4E | 4M | 4B | ||
4J | 4E | 4N | 4B | ||
4K | 4F | 4O | 4B | ||
2H | 2E | 2I | 2B | ||
2J | 2B | ||||
2F | 2K | 2C | 2G | 4R | 4G |
2L | 2D | 2N | 2F | ||
2M | 2D | 4S | 4H | ||
4P | 4C | 4T | 4I | ||
4Q | 4C | ||||
2H | 4U | 4G | 2I | 4Z | 4D |
4V | 4H | 4AA | 4E | ||
4W | 4I | 2P | 2E | ||
2O | 2F | 4AB | 4E | ||
4X | 4H | 2Q | 2E | ||
4Y | 4I | 4AC | 4F | ||
4AD | 4F | ||||
2J | 4AE | 4G | 3A | 3A | 3A |
4AF | 4H | 6A | 6A | ||
2R | 2F | 6B | 6A | ||
4AG | 4I | 6C | 6A | ||
4AH | 4I | ||||
4AI | 4H | ||||
3B | 3B | 3C | 4A | 8A | 8A |
6D | 6B | 8B | 8B | ||
6E | 6B | 4AJ | 4L | ||
4B | 8C | 8C | 4C | 4AL | 4N |
8D | 8D | 4AM | 4O | ||
4AK | 4M | 4AN | 4P | ||
4D | 4AO | 4J | 4E | 4AR | 4N |
4AP | 4K | 4AS | 4O | ||
4AQ | 4K | 4AT | 4P | ||
4AU | 4P | ||||
4F | 8E | 8E | 4G | 8G | 8E |
4AV | 4R | 4AX | 4R | ||
4AW | 4Q | 8H | 8F | ||
8F | 8F | 4AY | 4Q | ||
4H | 8I | 8E | 4I | 8K | 8A |
8J | 8F | 8L | 8B | ||
4AZ | 4Q | 8M | 8B | ||
4BA | 4R | 4BB | 4L | ||
4BC | 4L | ||||
4J | 8N | 8C | 5A | 5A | 5A |
8O | 8D | 10A | 10A | ||
8P | 8D | 10B | 10A | ||
4BD | 4M | ||||
4BE | 4M | ||||
6A | 12A | 12A | 6B | 6G | 6D |
12B | 12B | 12C | 12C | ||
6F | 6C | 12D | 12C | ||
6C | 12E | 12D | 6D | 12G | 12F |
6H | 6F | 6I | 6G | ||
12F | 12R | ||||
6E | 12H | 12A | 6F | 12K | 12D |
12I | 12B | 6L | 6F | ||
12J | 12B | 12L | 12E | ||
6J | 6C | 12M | 12E | ||
6K | 6C | ||||
6G | 12N | 12G | 6H | 6N | 6H |
6M | 6J | 6O | 6I | ||
6P | 6I | ||||
8A | 8Q | 8G | 8B | 8S | 8I |
8R | 8H | 8T | 8J | ||
10A | 20A | 20A | 12A | 24A | 24A |
10C | 10B | 12O | 12H | ||
12B | 24B | 24B | |||
12P | 12I |
[g]¯G | 1A | 2A | 2B | 2C |
χ1 | 1 | 1 | 1 | 1 |
χ38 | a | a | a | -a |
χ38+t2 | 30b | 30b | -2b | 0 |
χ38+t2+t3 | 32c | -32c | 0 | 0 |
[g]Sp6(2) | 1A | 2A | |||
[g]26⋅Sp6(2) | 1A | 2A | 4A | 4B | 2B |
χ32 | 63 | -1 | -29 | 3 | -1 |
[g]25:S6 | 1A | 2A | 2E | ||||||||||
[g]26:(25:S6) | 1A | 2A | 2B | 2C | 2D | 2E | 4A | 2L | 2M | 2N | 2O | 4I | 4J |
χ39 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 |
χ76 | 30 | 30 | -2 | 0 | -30 | 2 | 0 | -12 | -12 | 4 | 2 | -2 | 0 |
χ128 | 32 | -32 | 0 | 0 | 0 | 0 | 0 | -16 | 16 | 0 | 0 | 0 | 0 |
χ39+χ76+χ128 | 63 | -1 | -1 | -1 | -29 | 3 | -1 | -29 | 3 | 3 | 3 | -1 | -1 |
[h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) | [h]25:S6 ⟶[g]Sp(6,2) |
1A1A | 2J2D | 4G4E | 6E6B |
2A2A | 3A3A | 4H4E | 6F6D |
2B2B | 3B3C | 4I4B | 6G6G |
2C2C | 4A4B | 4J4C | 6H6F |
2D2C | 4B4C | 5A5A | 8A8A |
2E2A | 4C4D | 6A6B | 8B8B |
2F2B | 4D4A | 6B6A | 10A10A |
2G2D | 4E4D | 6C6D | 12A12A |
2H2D | 4F4E | 6D6E | 12B12B |
2I2C |
[g]25:S6 | k | fj | dj | w | [¯g]M1 | [¯g]¯G | |CM1(¯g)| and |C¯G(¯g)| |
1A | 64 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 1A | 1A | 1474560 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 2A | 2A | 1474560 | ||
f3=30 | (0,1,0,0,0,0) | (0,1,0,0,0,0) | 2B | 2B | 49152 | ||
f4=32 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 2C | 2C | 46080 | ||
2A | 32 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2D | 4A | 737280 |
f2=15 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 2E | 4B | 49152 | ||
f3=16 | (1,0,0,0,0,0) | (1,0,1,0,0,0) | 4A | 2D | 46080 | ||
2B | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2F | 2E | 24576 |
f2=3 | (1,1,1,1,1,0) | (0,0,0,0,0,0) | 2G | 2F | 8192 | ||
f3=4 | (0,0,0,1,1,1) | (1,0,1,0,0,1) | 4B | 4C | 6144 | ||
f4=8 | (1,0,0,0,0,0) | (0,1,0,0,1,0) | 4C | 4D | 3072 | ||
2C | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2H | 4E | 24576 |
f2=3 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 2I | 4F | 8192 | ||
f3=4 | (1,1,0,0,1,1) | (1,0,1,0,0,1) | 4D | 2G | 6144 | ||
f4=8 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 4E | 4G | 3072 | ||
2D | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2J | 4H | 12288 |
f2=3 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 2K | 4I | 4096 | ||
f3=4 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 4F | 4J | 3072 | ||
f4=4 | (1,1,1,1,0,0) | (1,1,0,0,0,1) | 4G | 4K | 3072 | ||
f5=4 | (1,0,1,0,1,0) | (1,0,1,0,0,1) | 4H | 2H | 3072 | ||
2E | 32 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2L | 4L | 24576 |
f2=1 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 2M | 4M | 24576 | ||
f3=6 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 2N | 4N | 4096 | ||
f4=8 | (1,1,0,0,1,1) | (0,1,1,0,0,0) | 2O | 4O | 3072 | ||
f5=8 | (0,1,0,0,1,1) | (0,1,1,0,0,0) | 4I | 2I | 3072 | ||
f6=8 | (0,1,0,0,0,1) | (0,0,0,0,0,0) | 4J | 2J | 3072 | ||
2F | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2P | 2K | 6144 |
f2=1 | (1,1,1,1,1,0) | (0,0,0,0,0,0) | 2Q | 2L | 6144 | ||
f3=2 | (1,1,1,1,0,1) | (0,0,0,0,0,0) | 2R | 2M | 3072 | ||
f4=6 | (1,1,1,1,1,1) | (0,0,0,1,0,1) | 4K | 4P | 1024 | ||
f5=6 | (0,1,1,1,1,1) | (1,1,1,0,1,1) | 4L | 4Q | 1024 | ||
2G | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2S | 4R | 3072 |
f2=1 | (1,0,0,1,1,1) | (1,0,1,0,0,1) | 4M | 2N | 3072 | ||
f3=3 | (1,1,1,1,1,1) | (1,1,1,1,1,0) | 4N | 4S | 1024 | ||
f4=3 | (1,1,1,1,0,0) | (1,0,1,1,0,0) | 4O | 4T | 1024 | ||
2H | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2T | 4U | 1024 |
f2=1 | (1,1,1,0,1,1) | (1,0,0,0,0,1) | 4P | 4V | 1024 | ||
f3=1 | (1,1,1,1,0,0) | (1,1,0,0,0,1) | 4Q | 4W | 1024 | ||
f4=1 | (1,1,1,1,1,0) | (1,0,1,0,0,1) | 4R | 2O | 1024 | ||
f5=2 | (1,1,1,1,1,1) | (1,0,0,0,0,1) | 4S | 4X | 512 | ||
f6=2 | (1,1,1,1,0,1) | (1,1,1,0,0,1) | 4T | 4Y | 512 | ||
2I | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2U | 4Z | 2048 |
f2=1 | (0,1,1,1,0,1) | (0,0,0,0,0,0) | 2V | 4AA | 2048 | ||
f3=2 | (0,1,1,1,1,1) | (1,0,1,1,1,0) | 4U | 2P | 1024 | ||
f4=2 | (1,1,1,1,1,1) | (1,0,1,1,1,0) | 2W | 4AB | 1024 | ||
f5=2 | (1,1,1,1,0,1) | (0,0,0,0,0,0) | 4V | 2Q | 1024 | ||
f6=4 | (1,1,1,1,0,0) | (1,1,0,1,0,0) | 4W | 4AC | 512 | ||
f7=4 | (1,0,1,1,1,1) | (1,1,0,1,0,0) | 4X | 4AD | 512 | ||
2J | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2X | 4AE | 1024 |
f2=1 | (1,1,1,1,0,1) | (1,0,1,0,0,1) | 4Y | 4AF | 1024 | ||
f3=1 | (1,1,1,0,0,1) | (1,0,1,1,1,0) | 4Z | 2R | 1024 | ||
f4=1 | (1,1,1,1,1,1) | (0,0,0,1,1,1) | 4AA | 4AG | 1024 | ||
f5=2 | (1,1,1,1,1,0) | (0,1,1,0,1,0) | 4AB | 4AH | 512 | ||
f6=2 | (1,1,0,1,1,1) | (1,1,0,0,1,1) | 4AC | 4AI | 512 | ||
3A | 16 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3A | 3A | 2304 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 6A | 6A | 2304 | ||
f3=6 | (0,0,0,1,0,0) | (0,0,0,0,1,1) | 6B | 6B | 384 | ||
f4=8 | (0,0,0,0,0,1) | (0,0,0,0,0,1) | 6C | 6C | 288 | ||
3B | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3B | 3B | 144 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 6D | 6D | 144 | ||
f3=2 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 6E | 6E | 72 | ||
4A | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AD | 8A | 1536 |
f2=3 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 4AE | 8B | 512 | ||
f3=4 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8A | 4AJ | 384 | ||
4B | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AF | 8C | 1536 |
f2=3 | (0,1,0,0,0,0) | (0,0,0,0,0,0) | 4AG | 8D | 512 | ||
f3=4 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 8B | 4AK | 384 | ||
4C | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AH | 4AL | 512 |
f2=1 | (1,0,0,1,0,0) | (0,0,0,0,0,0) | 4AI | 4AM | 512 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 4AJ | 4AN | 256 | ||
4D | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AK | 4AO | 512 |
f2=1 | (1,0,0,1,0,0) | (0,0,0,0,0,0) | 4AL | 4AP | 512 | ||
f3=2 | (0,0,1,0,0,1) | (0,0,0,0,0,0) | 4AM | 4AQ | 256 | ||
4E | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4A | 4AR | 256 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 4AO | 4AS | 256 | ||
f3=1 | (1,0,0,0,0,1) | (0,0,0,0,0,0) | 4AP | 4AT | 256 | ||
f4=1 | (1,0,0,0,1,0) | (0,0,0,0,0,0) | 4AQ | 4AU | 256 | ||
4F | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AR | 8E | 128 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8C | 4AV | 128 | ||
f3=1 | (0,1,0,0,0,0) | (1,0,1,1,1,0) | 8D | 4AW | 128 | ||
f4=1 | (1,1,0,0,0,0) | (1,0,1,1,1,0) | 4AS | 8F | 128 | ||
4G | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AT | 8G | 128 |
f2=1 | (0,0,0,1,1,0) | (1,0,1,0,0,1) | 8E | 4AX | 128 | ||
f3=1 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 4AU | 8H | 128 | ||
f4=1 | (1,1,0,1,1,1) | (1,0,1,0,0,1) | 8F | 4AY | 128 | ||
4H | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AV | 8I | 128 |
f2=1 | (1,0,0,0,1,0) | (1,0,1,0,1,1) | 4AW | 8J | 128 | ||
f3=1 | (0,1,0,0,0,1) | (0,0,0,0,0,0) | 8G | 4AZ | 128 | ||
f4=1 | (1,1,0,0,1,1) | (1,0,1,0,1,1) | 8H | 4BA | 128 | ||
4I | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4AX | 8K | 256 |
f2=1 | (1,0,1,0,0,1) | (0,0,0,0,0,0) | 4AY | 8L | 256 | ||
f3=2 | (1,0,0,0,1,0) | (1,0,1,0,1,1) | 4AZ | 8M | 128 | ||
f4=2 | (1,1,0,0,0,0) | (0,0,0,0,0,0) | 8I | 4BB | 128 | ||
f5=2 | (1,1,0,0,1,1) | (0,0,1,0,0,0) | 8J | 4BC | 128 | ||
4J | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4BA | 8N | 256 |
f2=1 | (1,0,1,1,1,0) | (0,0,0,0,0,0) | 4BB | 8O | 256 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,1,1,1) | 4BC | 8P | 128 | ||
f4=2 | (1,1,1,1,0,0,1) | (0,0,0,1,1,1) | 8K | 4BD | 128 | ||
f5=2 | (1,1,0,0,1,1) | (0,0,0,0,0,0) | 8L | 4BE | 128 | ||
5A | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 5A | 5A | 40 |
f2=1 | (1,0,1,0,0,1) | (1,0,1,0,0,1) | 10A | 10A | 40 | ||
f3=2 | (1,0,0,0,0,0) | (1,1,0,0,0,0) | 10B | 10B | 20 | ||
6A | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6F | 12A | 1152 |
f2=3 | (1,1,0,0,0,1) | (0,0,0,0,0,0) | 6G | 12B | 384 | ||
f3=4 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 12A | 6F | 288 | ||
6B | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6H | 6G | 192 |
f2=1 | (1,0,1,0,1,1) | (1,0,1,0,0,1) | 12B | 12C | 192 | ||
f3=2 | (1,0,1,1,0,1) | (0,1,1,0,0,0) | 12C | 12D | 96 | ||
6C | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6I | 12E | 192 |
f2=1 | (1,0,1,0,1,1) | (1,0,1,0,0,1) | 12D | 6H | 192 | ||
f3=2 | (1,0,1,1,1,1) | (0,1,1,0,1,0) | 12E | 12F | 96 | ||
6D | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6J | 12G | 72 |
f2=1 | (0,0,1,0,0,1) | (0,0,1,0,0,1) | 12F | 6I | 72 | ||
6E | 8 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6K | 12H | 192 |
f2=1 | (1,0,1,0,0,1) | (0,0,0,0,0,0) | 6L | 12I | 192 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 6M | 12J | 96 | ||
f4=2 | (1,0,1,0,1,1) | (0,1,1,0,0,0) | 12G | 6J | 96 | ||
f5=2 | (1,0,0,0,1,0) | (0,1,1,0,0,0) | 12H | 6K | 96 | ||
6F | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6N | 12K | 96 |
f2=1 | (1,0,0,0,0,0) | (0,1,1,0,0,0) | 12I | 6L | 96 | ||
f3=1 | (1,0,1,0,1,1) | (1,1,0,0,0,1) | 12J | 12L | 96 | ||
f4=1 | (1,0,0,0,1,0) | (1,0,1,0,0,1) | 12K | 12M | 96 | ||
6G | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6O | 12N | 24 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 12L | 6M | 24 | ||
6H | 4 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6P | 6N | 48 |
f2=1 | (1,1,1,0,1,1) | (0,0,0,0,0,0) | 6Q | 6O | 48 | ||
f3=2 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 6R | 6P | 24 | ||
8A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 8M | 8Q | 32 |
f2=1 | (1,0,0,0,0,0) | (0,0,0,0,0,0) | 8N | 8R | 32 | ||
8B | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 8O | 8S | 32 |
f2=1 | (1,0,0,0,0,0) | (1,0,0,0,0,0) | 8P | 8T | 32 | ||
10A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 10C | 20A | 20 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 20A | 10C | 20 | ||
12A | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 12M | 24A | 48 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 24A | 12O | 48 | ||
12B | 2 | f1=1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 12N | 24B | 48 |
f2=1 | (1,0,0,0,0,0) | (1,0,1,0,0,1) | 24B | 12P | 48 |
[g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 | [g]G | [x]¯G | 2 | 3 | 5 |
1A | 1A | 2A | 4A | 2A | 4F | 8E | 4F | 4G | 8G | 4AA | |||||||||
2A | 1A | 4B | 2A | 4AV | 2G | 4AX | 2Q | ||||||||||||
2B | 1A | 2D | 1A | 4AW | 2G | 8H | 4Z | ||||||||||||
2C | 1A | 8F | 4E | 4AY | 2Q | ||||||||||||||
2B | 2E | 1A | 2C | 4E | 2A | 4H | 8I | 4AA | 4I | 8K | 4Z | ||||||||
2F | 1A | 4F | 2A | 8J | 4Z | 8L | 4Z | ||||||||||||
4C | 2A | 2G | 1A | 4AZ | 2Q | 8M | 4Z | ||||||||||||
4D | 2B | 4G | 2B | 4BA | 2Q | 4BB | 2Q | ||||||||||||
4BC | 2Q | ||||||||||||||||||
2D | 4H | 2B | 2E | 4L | 2B | 4J | 8N | 4Z | 5A | 5A | 1A | ||||||||
4I | 2B | 4M | 2B | 8O | 4Z | 10A | 5A | 2A | |||||||||||
4J | 2B | 4N | 2B | 8P | 4Z | 10B | 5A | 2C | |||||||||||
4K | 2A | 4O | 2B | 4BD | 2Q | ||||||||||||||
2H | 1A | 2I | 1A | 4BE | 2Q | ||||||||||||||
2J | 1A | ||||||||||||||||||
2F | 2K | 1A | 2G | 4R | 2A | 6A | 12A | 6A | 4A | 6B | 6G | 3A | 2E | ||||||
2L | 1A | 2N | 1A | 12B | 6A | 4B | 12C | 6A | 4C | ||||||||||
2M | 1A | 4S | 2B | 6F | 3A | 2D | 12D | 6B | 4D | ||||||||||
4P | 2B | 4T | 2B | ||||||||||||||||
4Q | 2B | ||||||||||||||||||
2H | 4U | 2B | 2I | 4Z | 2B | 6C | 12E | 6A | 4E | 6D | 12G | 6D | 4A | ||||||
4V | 2B | 4AA | 2B | 6H | 3A | 2G | 6I | 3B | 2D | ||||||||||
4W | 2A | 2P | 1A | 12F | 6B | 4G | |||||||||||||
2O | 1A | 4AB | 2B | ||||||||||||||||
4X | 2B | 2Q | 1A | ||||||||||||||||
4Y | 2B | 4AC | 2B | ||||||||||||||||
4AD | 2B | ||||||||||||||||||
2J | 4AE | 2B | 3A | 3A | 1A | 6E | 12H | 6B | 4L | 6F | 12K | 6B | 4H | ||||||
4AF | 2A | 6A | 3A | 2A | 12I | 6B | 4M | 6L | 3A | 2H | |||||||||
2R | 1A | 6B | 3A | 2B | 12J | 6B | 4O | 12L | 6B | 4J | |||||||||
4AG | 2B | 6C | 3A | 2C | 6J | 3A | 2I | 12M | 6A | 4K | |||||||||
4AH | 2B | 6K | 3A | 2J | |||||||||||||||
4AI | 2B | ||||||||||||||||||
3B | 3B | 1A | 4A | 8A | 4E | 6G | 12N | 6D | 4R | 6H | 6N | 3B | 2K | ||||||
6D | 3B | 2A | 8B | 4E | 6M | 3B | 2N | 6O | 3B | 2L | |||||||||
6E | 3B | 2C | 4AJ | 2G | 6P | 3B | 2M | ||||||||||||
4B | 8C | 4E | 4C | 4AL | 2E | 8A | 8Q | 4AL | 8B | 8S | 4AO | ||||||||
8D | 4E | 4AM | 2F | 8R | 4AM | 8T | 4AP | ||||||||||||
4AK | 2G | 4AN | 2F | ||||||||||||||||
4D | 4AO | 2E | 4E | 4AR | 2E | 10A | 20A | 10A | 4A | 12A | 24A | 12E | 8A | ||||||
4AP | 2F | 4AS | 2F | 10C | 5A | 2D | 12O | 6H | 4AJ | ||||||||||
4AQ | 2F | 4AT | 2F | ||||||||||||||||
4AU | 2F | ||||||||||||||||||
12B | 24B | 12E | 8C | ||||||||||||||||
12P | 6H | 4AK |
[g](25:S6) | [x]26⋅(25:S6) ⟶ | [y]26⋅Sp6(2) | [g](25:S6) | [x]26⋅(25:S6) ⟶ | [y]26⋅Sp6(2) |
1A | 1A | 1A | 2A | 4A | 4A |
2A | 2A | 4B | 4B | ||
2B | 2A | 2D | 2B | ||
2C | 2A | ||||
2B | 2E | 2C | 2C | 4E | 4D |
2F | 2D | 4F | 4E | ||
4C | 4C | 2G | 2E | ||
4D | 4C | 4G | 4F | ||
2D | 4H | 4D | 2E | 4L | 4A |
4I | 4E | 4M | 4B | ||
4J | 4E | 4N | 4B | ||
4K | 4F | 4O | 4B | ||
2H | 2E | 2I | 2B | ||
2J | 2B | ||||
2F | 2K | 2C | 2G | 4R | 4G |
2L | 2D | 2N | 2F | ||
2M | 2D | 4S | 4H | ||
4P | 4C | 4T | 4I | ||
4Q | 4C | ||||
2H | 4U | 4G | 2I | 4Z | 4D |
4V | 4H | 4AA | 4E | ||
4W | 4I | 2P | 2E | ||
2O | 2F | 4AB | 4E | ||
4X | 4H | 2Q | 2E | ||
4Y | 4I | 4AC | 4F | ||
4AD | 4F | ||||
2J | 4AE | 4G | 3A | 3A | 3A |
4AF | 4H | 6A | 6A | ||
2R | 2F | 6B | 6A | ||
4AG | 4I | 6C | 6A | ||
4AH | 4I | ||||
4AI | 4H | ||||
3B | 3B | 3C | 4A | 8A | 8A |
6D | 6B | 8B | 8B | ||
6E | 6B | 4AJ | 4L | ||
4B | 8C | 8C | 4C | 4AL | 4N |
8D | 8D | 4AM | 4O | ||
4AK | 4M | 4AN | 4P | ||
4D | 4AO | 4J | 4E | 4AR | 4N |
4AP | 4K | 4AS | 4O | ||
4AQ | 4K | 4AT | 4P | ||
4AU | 4P | ||||
4F | 8E | 8E | 4G | 8G | 8E |
4AV | 4R | 4AX | 4R | ||
4AW | 4Q | 8H | 8F | ||
8F | 8F | 4AY | 4Q | ||
4H | 8I | 8E | 4I | 8K | 8A |
8J | 8F | 8L | 8B | ||
4AZ | 4Q | 8M | 8B | ||
4BA | 4R | 4BB | 4L | ||
4BC | 4L | ||||
4J | 8N | 8C | 5A | 5A | 5A |
8O | 8D | 10A | 10A | ||
8P | 8D | 10B | 10A | ||
4BD | 4M | ||||
4BE | 4M | ||||
6A | 12A | 12A | 6B | 6G | 6D |
12B | 12B | 12C | 12C | ||
6F | 6C | 12D | 12C | ||
6C | 12E | 12D | 6D | 12G | 12F |
6H | 6F | 6I | 6G | ||
12F | 12R | ||||
6E | 12H | 12A | 6F | 12K | 12D |
12I | 12B | 6L | 6F | ||
12J | 12B | 12L | 12E | ||
6J | 6C | 12M | 12E | ||
6K | 6C | ||||
6G | 12N | 12G | 6H | 6N | 6H |
6M | 6J | 6O | 6I | ||
6P | 6I | ||||
8A | 8Q | 8G | 8B | 8S | 8I |
8R | 8H | 8T | 8J | ||
10A | 20A | 20A | 12A | 24A | 24A |
10C | 10B | 12O | 12H | ||
12B | 24B | 24B | |||
12P | 12I |