Research article

Computing the conjugacy classes and character table of a non-split extension 26·(25:S6) from a split extension 26:(25:S6)

  • Received: 17 July 2019 Accepted: 04 February 2020 Published: 26 February 2020
  • MSC : 20C15, 20C40

  • In this paper, we will demonstrate how the character table of a sub-maximal subgroup 26:(25:S6) of the sporadic simple group Fi22 can be used to obtain the conjugacy classes and character table of a non-split extension of the form 26(25:S6), which sits maximal in the unique non-split extension 26Sp6(2).

    Citation: Abraham Love Prins. Computing the conjugacy classes and character table of a non-split extension 26·(25:S6) from a split extension 26:(25:S6)[J]. AIMS Mathematics, 2020, 5(3): 2113-2125. doi: 10.3934/math.2020140

    Related Papers:

    [1] Zongbing Lin, Kaimin Cheng . A note on consecutive integers of the form 2x + y2. AIMS Mathematics, 2020, 5(5): 4453-4458. doi: 10.3934/math.2020285
    [2] Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403
    [3] Yasin Ünlütürk, Talat Körpınar, Muradiye Çimdiker . On k-type pseudo null slant helices due to the Bishop frame in Minkowski 3-space E13. AIMS Mathematics, 2020, 5(1): 286-299. doi: 10.3934/math.2020019
    [4] Choonkil Park, XiaoYing Wu . Homomorphism-derivation functional inequalities in C*-algebras. AIMS Mathematics, 2020, 5(5): 4482-4493. doi: 10.3934/math.2020288
    [5] Sara Pouyandeh, Amirhossein Morovati Moez, Ali Zeydi Abdian . The spectral determinations of connected multicone graphs KwmCP(n). AIMS Mathematics, 2019, 4(5): 1348-1356. doi: 10.3934/math.2019.5.1348
    [6] Wenjia Guo, Xiaoge Liu, Tianping Zhang . Dirichlet characters of the rational polynomials. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194
    [7] Motohiro Sobajima, Kentarou Yoshii . Lp-analysis of one-dimensional repulsive Hamiltonian with a class of perturbations. AIMS Mathematics, 2018, 3(1): 21-34. doi: 10.3934/Math.2018.1.21
    [8] Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang . On the construction, properties and Hausdorff dimension of random Cantor one pth set. AIMS Mathematics, 2020, 5(4): 3138-3155. doi: 10.3934/math.2020202
    [9] Özgür Boyacıoğlu Kalkan . On normal curves and their characterizations in Lorentzian n-space. AIMS Mathematics, 2020, 5(4): 3510-3524. doi: 10.3934/math.2020228
    [10] Muhammad Sheraz, Vasile Preda, Silvia Dedu . Non-extensive minimal entropy martingale measures and semi-Markov regime switching interest rate modeling. AIMS Mathematics, 2020, 5(1): 300-310. doi: 10.3934/math.2020020
  • In this paper, we will demonstrate how the character table of a sub-maximal subgroup 26:(25:S6) of the sporadic simple group Fi22 can be used to obtain the conjugacy classes and character table of a non-split extension of the form 26(25:S6), which sits maximal in the unique non-split extension 26Sp6(2).


    In the papers [2] and [16], the character tables of the non-split extension ¯G3=26Sp6(2) and split extension 26:Sp6(2) were successfully computed by the method of Fischer-Clifford matrices [8]. In the ATLAS [6] we found that NFi22(26)26:Sp6(2) is a maximal subetaoup of the smallest Fischer sporadic simple group Fi22 of index 694980. Here the elementary abelian group 26 is a pure 2B-group, where 2B denotes a class of involutions in Fi22. Dempwolff in [7] proved that a unique non-split extension (up to isomorphism) of the form ¯Gn=22nSp2n(2) does exist for all n2, where ¯Gn/22nSp2n(2) acts faithfully on 22n. In [2] it was noted that 26:Sp6(2) and ¯G3 give rise to the same character table. The groups 26:Sp6(2) and ¯G3 have subetaoups of types M1=26:(25:S6) and ¯G=26(25:S6), where M1 and ¯G are pre-images of a maximal subetaoup 25:S6 of index 63 in Sp6(2), under the natural epimorphism modulo 26.

    In this paper, it will be shown that the character tables of M1 and ¯G coincide and how the conjugacy classes of ¯G can be obtained from the classes of M1 by "restricting" characters of ¯G3 (see Section 5 of this paper) to characters of M1. In this regard, the format of the character tables of M1 and ¯G3 (see [2] and [13]) which were obtained by the method of Fischer-Clifford matrices, plays an important role. The power maps of ¯G and the fusion map of ¯G into ¯G3 are also computed. Most of our computations are done in the computer algebra systems MAGMA [5] and GAP [21]. For concepts and definitions used in this paper, the readers are referred to the review paper on Fischer-Clifford theory [3] and [1,11,12,17,18,19].

    Since the ordinary character tables of the groups 26:Sp6(2), ¯G3, M1 and ¯G have been computed by the technique of Fischer-Clifford matrices, a brief theoretical background of this technique will be given in this section. In Section 4, it will be shown that only the ordinary irreducible characters of the inertia factors will be used in the construction of the character table of ¯G. Therefore, only the case where every irreducible character of N can be extended to its inertia group in the extension group N.G will be discussed. Here the author will follow closely the work of the authors in [16].

    Let ¯G=N.G be an extension of N by G and θIrr(N), where Irr(N) denotes the irreducible characters of N. Define θg by θg(n)=θ(gng1) for g¯G, nN and θgIrr(N). Let ¯H={x¯G|θx=θ}=I¯G(θ) be the inertia group of θ in ¯G. We say that θ is extendible to ¯H if there exists ϕIrr(¯H) such that ϕN=θ. If θ is extendible to ¯H, then by Gallagher [11], we have

    {γ|γIrr(¯H),<γN,θ>≠0}={βϕ|βIrr(¯H/N)}.

    Let ¯G have the property that every irreducible character of N can be extended to its inertia group. Now let θ1=1N,θ2,,θt be representatives of the orbits of ¯G on Irr(N), ¯Hi=I¯G(ϕi), 1it, ϕiIrr(¯Hi) be an extension of θi to ¯Hi and βIrr(¯Hi) such that Nker(β). Then

    Irr(¯G)=ti=1{(βϕi)¯G|βIrr(¯Hi),Nker(β)}=ti=1{(βϕi)¯G|βIrr(¯Hi/N)}

    Hence the irreducible characters of ¯G will be divided into blocks, where each block corresponds to an inertia group ¯Hi.

    Let Hi be the inertia factor group and ϕi be an extension of θi to ¯Hi. Take θ1=1N as the identity character of N, then ¯H1=¯G and H1G. Let X(g)={x1,x2,,xc(g)} be a set of representatives of the conjugacy classes of ¯G from the coset N¯g whose images under the natural homomorphism ¯GG are in the class [g] of G and we take x1=ˉg. We define

    R(g)={(i,yk)|1it,Hi[g],1kr},

    where yk runs over representatives of the conjugacy classes of elements of Hi which fuse into [g]. Let {ylk} be the representatives of conjugacy classes of ¯Hi which contain liftings of yk under the natural homomorphism ¯HiHi. Then we define the Fischer-Clifford matrix M(g) by M(g)=(aj(i,yk)), where

    aj(i,yk)=l|C¯G(xj)||C¯Hi(ylk)|ϕi(ylk),

    with columns indexed by X(g) and rows indexed by R(g) and where l is the summation over all l for which ylkxj in ¯G. Then the partial character table of ¯G on the classes {x1,x2,,xc(g)} is given by [C1(g)M1(g)C2(g)M2(g)Ct(g)Mt(g)] where the Fischer-Clifford matrix M(g)=[M1(g)M2(g)Mt(g)] is divided into blocks Mi(g) with each block corresponding to an inertia group ¯Hi and Ci(g) is the partial character table of Hi consisting of the columns corresponding to the classes that fuse into [g]. Hence the full character table of ¯G will be [Δ1Δ2Δt], where Δi = [Ci(1)Mi(1)|Ci(g2)Mi(g2)|...|Ci(gk)Mi(gk)] with {1,g1,g2,...,gk} the representatives of conjugacy classes of G. We can also observe that |Irr(¯G)| = |Irr(H1)| + |Irr(H2)| +...+ |Irr(Ht)|.

    The group ¯G3=26Sp6(2) was constructed in [2] as a permutation group on 128 points and it was shown that ¯G3 has an inertia group ¯G=26(25:S6) which belongs to a non-split extension of a reducible module of dimension 6 over GF(2) for the maximal subetaoup 25:S6 of Sp6(2). Using the generators of ¯G3 given in [2], the group ¯G is constructed as the centralizer C¯G3(2A) of the class of involutions 2A within ¯G3.

    Let ¯G=26(25:S6) be the non-split extension of N=26 by G=25:S6. The group 25:S6 is the stabilizer of a vector in the action of Sp6(2) on its natural 6-dimensional module 26. This action is the same in both the split and non-split extensions 26:Sp6(2) and ¯G3. This immediately defines the action of 25:S6 on the module 26. Note that the action of the split extension M1=26:(25:S6) on 26 is the same as the action of 25:S6 on 26. The group G can be constructed as a matrix group of dimension 6 over the finite field GF(2) within Sp6(2). Now with the action of G on N=26, where we view N as the vector space of dimension six over GF(2), we will obtain four orbits of lengths 1, 1, 30 and 32 with corresponding point stabilizers G, G, 24:S5 and S6, respectively. By Brauer's Theorem [10] the action of G on Irr(N) will also produce 4 orbits and since the action is self-dual, the orbit lengths will be 1,1,30 and 32 with corresponding inertia factor groups H1=H2=G, H3=24:S5 and H4=S6.

    Having obtained the inertia factors H1=H2=G, H3=24:S5 and H4=S6 for the action of G on Irr(N), we can formed the Fischer-Clifford matrix M(1A) corresponding to the identity coset N1¯G=N as follows:

    M(1A)=2304023040768720147456014745604915246080(11111111303020323200)  1  1  3032

    The column weights above the matrix M(1A) are the centralizer orders |C¯G(¯g)| of the classes 1A,2A,2B and 2C of ¯G (see Table 5) coming from the identity coset N(¯1A)=N by means of the technique of coset-analysis (see [14], [15] and [16]). Whereas, the row weights to the left of the matrix M(1A) represent the centralizer orders |CHi(1A)| of the inertia factors Hi on the identity element 1A.

    Table 1 is the partial ordinary character table of ¯G on the classes 1A,2A,2B and 2C of ¯G, where each of the 4 lines of Table 1 corresponds to the first row of entries of the sub-matrices Ci(1A)Mi(1A),i=1,2,3,4. Mi(1A) and Ci(1A) correspond to the rows of the Fischer-Clifford matrix M(1A) and columns of the projective character tables of the inertia factors Hi, respectively, which are associated with the classes [1A]Hi of the inertia factors Hi which fuse into the class [1A]G of G. Also, note that the character values in the 1st column of Table 1 are the degrees of the ordinary irreducible characters χ1,χ38,χ38+t2 and χ38+t2+t3 of ¯G. The characters χ1,χ38,χ38+t2 and χ38+t2+t3 occupy the first position for each block of characters coming from an inertia subetaoup ¯Hi of ¯G, where 37,t2 and t3 represent the number |IrrProj(Hi,αi)| of irreducible projective characters with associated factor set αi for the inertia factors H1,H2 and H3, respectively. Now deg(η1)=1,deg(ϕ1)=a,deg(ψ1)=b and deg(γ1)=c are the degrees of the irreducible projective characters 1G, ϕ1, ψ1 and γ1 which occupy the first position in each set IrrProj(Hi,αi), i=1,2,...,4, respectively.

    Table 1.  The partial character table of ¯G for coset N.
    [g]¯G 1A 2A 2B 2C
    χ1 1 1 1 1
    χ38 a a a -a
    χ38+t2 30b 30b -2b 0
    χ38+t2+t3 32c -32c 0 0

     | Show Table
    DownLoad: CSV

    We copy a small part of the ordinary character table of 26Sp6(2) (see Table 11.12 in [4]), containing the values of the character 63a on the classes 1A,2A:

    [g]¯G31A2A63a631

    Now the classes 1A,2A,2B and 2C of ¯G consist of the elements of N (see Table 5). If we decompose (63a)N into the the set Irr(N) and also notice that <(63a)N,1N> = 0, then (63a)N=a(χ38)N+b(χ38+t2)N+c(χ38+t2+t3)N, where a,b and c are defined as above. If we take into account the fusion of the classes 1A,2A,2B and 2C of ¯G into the classes of 1A and 2A of ¯G3, and the decomposition of (63a)N into the set Irr(N), then the following set of equations (by restricting the character values of 63a to Table 1) is obtained:

    1. (63a)N(1A)=a+30b+32c=63

    2. (63a)N(2A)=a+30b32c=1

    3. (63a)N(2B)=a2b=1

    4. (63a)N(2C)=a=1

    Solving the above equations simultaneously, we obtain that a=b=1=c=1 and hence deg(ϕ1)=deg(ψ1)=deg(γ1)=1. We can conclude that only the ordinary irreducible characters tables of the inertia factors Hi will be involved in the construction of the ordinary character table of 26(25:S6). This means that the ordinary irreducible characters of the split extension M1=26:(25:S6) (Table 9.7 in [13]) are the same as the ones for the non-split extension ¯G, but the class orders of the two groups will differ as it will be shown in Section 5.

    In this section, we will compute the order of an element ¯g in a conjugacy class [¯g]¯G of ¯G from the conjugacy classes and ordinary irreducible characters of both M1 and ¯G3. For both ¯G and M1, the centralizer orders for each class of elements coming from a corresponding coset N¯g, g25:S6, will be the same, but their class orders may be different. The method of coset-analysis was used to compute the conjugacy classes of elements of 26:(25:S6) (see Table 5) and ¯G3 (Table 1 in [2]). Let ¯G=N.G be an extension of N by G, where N is abelian. Then for gG, we write ¯g for a lifting of g in ¯G under the natural homomorphism ¯GG. We consider a coset N¯g for each class representative g of G, writing k for number of orbits of N acting by conjugation on the coset N¯g, and fj for the numbers of these fused by the action of {¯h:hCG(g)}. Note if ¯G is a split extension then ¯g becomes g. The order of the centralizer C¯G(x) for each element x¯G in a conjugacy class [x]¯G is given by |C¯G(x)|=k|CG(g)|fj.

    For example, let consider the classes of M1=26:(25:S6) obtained from the cosets N(2A) and N(2E) (see Table 3), where 2A and 2E are classes of involutions in 25:S6. In addition, we consider also the partial character table of M1 corresponding to the cosets N(2A) and N(2E) (see [13]), which was computed by the technique of Fischer-Clifford matrices. We obtained also from [13] that (ϕ1=63a)26:(25:S6) = χ38+χ75+χ127, (ϕ2=63b)26:(25:S6) = χ39+χ76+χ128, (ϕ3=315a)26:(25:S6) = χ43+χ86+χ94+χ132 and (ϕ4=315b)26:(25:S6) = χ40+χ75+χ80+χ94+χ130, where ϕ1, ϕ2, ϕ3 and ϕ4 are ordinary irreducible characters of 26:Sp6(2) of degrees 63 and 315 which are restricted to irreducible characters of M1 by the technique of set intersection (see [9,14,16]).

    From Table 4 we notice that classes 2A and 2E of 25:S6 are fusing into the class 2A of Sp6(2). Hence the classes of ¯G, which will be obtained from the cosets N(¯2A) and N(¯2E) using coset analysis, will fuse into the classes of ¯G3 lying above the class 2A of Sp6(2). Since the character tables of ¯G and M1 coincide, the corresponding cosets N(¯2A) and N(¯2E) for both of the groups will produce the same number of classes and share the same class centralizer orders and partial character tables. Also ¯G3 and 26:Sp6(2) share the same character table and therefore we can expect that the irreducible character χ32 of degree 63 of ¯G3 (see Table 2) will restrict to the same irreducible characters as above-mentioned character ϕ2=63b.

    Table 2.  The partial character table of ¯G3=26Sp6(2).
    [g]Sp6(2) 1A 2A
    [g]26Sp6(2) 1A 2A 4A 4B 2B
    χ32 63 -1 -29 3 -1

     | Show Table
    DownLoad: CSV
    Table 3.  The partial character table of M1=26:(25:S6).
    [g]25:S6 1A 2A 2E
    [g]26:(25:S6) 1A 2A 2B 2C 2D 2E 4A 2L 2M 2N 2O 4I 4J
    χ39 1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1
    χ76 30 30 -2 0 -30 2 0 -12 -12 4 2 -2 0
    χ128 32 -32 0 0 0 0 0 -16 16 0 0 0 0
    χ39+χ76+χ128 63 -1 -1 -1 -29 3 -1 -29 3 3 3 -1 -1

     | Show Table
    DownLoad: CSV
    Table 4.  The fusion of 25:S6 into Sp(6,2).
    [h]25:S6 [g]Sp(6,2) [h]25:S6 [g]Sp(6,2) [h]25:S6 [g]Sp(6,2) [h]25:S6 [g]Sp(6,2)
    1A1A 2J2D 4G4E 6E6B
    2A2A 3A3A 4H4E 6F6D
    2B2B 3B3C 4I4B 6G6G
    2C2C 4A4B 4J4C 6H6F
    2D2C 4B4C 5A5A 8A8A
    2E2A 4C4D 6A6B 8B8B
    2F2B 4D4A 6B6A 10A10A
    2G2D 4E4D 6C6D 12A12A
    2H2D 4F4E 6D6E 12B12B
    2I2C

     | Show Table
    DownLoad: CSV

    Suppose that Table 3 is the partial character table of ¯G corresponding to the cosets N, N(¯2A) and N(¯2E) and irreducible characters of degrees 1, 30 and 32. Now the ordinary character χ32 of ¯G3 in Table 2 will restrict to the sum of the irreducible characters χ39, χ76 and χ128 of ¯G in Table 3. If the character values of χ32 on the classes 4A, 4B and 2B coming from the coset N(¯2A) in Table 2 and the character values of the restricted character (χ32)¯G=χ39+χ76+χ128 on the classes 2D,2E,4A,2L,2M,2N,2O,4I and 4J coming from the cosets N(¯2A) and N(¯2E) in Table 3 are taking into consideration, then the class orders of 2D,2E,2L,2M,2N and 2O are forced to change from order 2 to order 4 whereas the class orders of 4A,4I and 4J are forced to change from order 4 to order 2. Hence we obtained the classes of ¯G, with their respective class orders and centralizer orders (see Table 5), associated with the cosets N(¯2A) and N(¯2E). In a similar fashion, we obtained all the classes of ¯G, with their class and centralizer orders, using the above restricted characters ϕ1, ϕ2, ϕ3 and ϕ4 together with the ordinary character tables of ¯G3 and M1. See Table 5 where all the information concerning the conjugacy classes of M1 and ¯G are listed. For the explanation of the parameters used in Table 5 the readers are referred to [16] and [20].

    Table 5.  The conjugacy classes of elements of the groups M1 and ¯G.
    [g]25:S6 k fj dj w [¯g]M1 [¯g]¯G |CM1(¯g)| and |C¯G(¯g)|
    1A 64 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 1A 1A 1474560
    f2=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 2A 2A 1474560
    f3=30 (0,1,0,0,0,0) (0,1,0,0,0,0) 2B 2B 49152
    f4=32 (1,0,0,0,0,0) (1,0,0,0,0,0) 2C 2C 46080
    2A 32 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2D 4A 737280
    f2=15 (0,1,0,0,0,0) (0,0,0,0,0,0) 2E 4B 49152
    f3=16 (1,0,0,0,0,0) (1,0,1,0,0,0) 4A 2D 46080
    2B 16 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2F 2E 24576
    f2=3 (1,1,1,1,1,0) (0,0,0,0,0,0) 2G 2F 8192
    f3=4 (0,0,0,1,1,1) (1,0,1,0,0,1) 4B 4C 6144
    f4=8 (1,0,0,0,0,0) (0,1,0,0,1,0) 4C 4D 3072
    2C 16 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2H 4E 24576
    f2=3 (0,1,0,0,0,0) (0,0,0,0,0,0) 2I 4F 8192
    f3=4 (1,1,0,0,1,1) (1,0,1,0,0,1) 4D 2G 6144
    f4=8 (1,0,0,0,0,0) (0,1,1,0,0,0) 4E 4G 3072
    2D 16 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2J 4H 12288
    f2=3 (1,0,0,0,0,1) (0,0,0,0,0,0) 2K 4I 4096
    f3=4 (1,0,0,0,0,0) (0,1,1,0,0,0) 4F 4J 3072
    f4=4 (1,1,1,1,0,0) (1,1,0,0,0,1) 4G 4K 3072
    f5=4 (1,0,1,0,1,0) (1,0,1,0,0,1) 4H 2H 3072
    2E 32 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2L 4L 24576
    f2=1 (1,1,0,0,0,1) (0,0,0,0,0,0) 2M 4M 24576
    f3=6 (1,0,0,0,0,1) (0,0,0,0,0,0) 2N 4N 4096
    f4=8 (1,1,0,0,1,1) (0,1,1,0,0,0) 2O 4O 3072
    f5=8 (0,1,0,0,1,1) (0,1,1,0,0,0) 4I 2I 3072
    f6=8 (0,1,0,0,0,1) (0,0,0,0,0,0) 4J 2J 3072
    2F 16 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2P 2K 6144
    f2=1 (1,1,1,1,1,0) (0,0,0,0,0,0) 2Q 2L 6144
    f3=2 (1,1,1,1,0,1) (0,0,0,0,0,0) 2R 2M 3072
    f4=6 (1,1,1,1,1,1) (0,0,0,1,0,1) 4K 4P 1024
    f5=6 (0,1,1,1,1,1) (1,1,1,0,1,1) 4L 4Q 1024
    2G 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2S 4R 3072
    f2=1 (1,0,0,1,1,1) (1,0,1,0,0,1) 4M 2N 3072
    f3=3 (1,1,1,1,1,1) (1,1,1,1,1,0) 4N 4S 1024
    f4=3 (1,1,1,1,0,0) (1,0,1,1,0,0) 4O 4T 1024
    2H 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2T 4U 1024
    f2=1 (1,1,1,0,1,1) (1,0,0,0,0,1) 4P 4V 1024
    f3=1 (1,1,1,1,0,0) (1,1,0,0,0,1) 4Q 4W 1024
    f4=1 (1,1,1,1,1,0) (1,0,1,0,0,1) 4R 2O 1024
    f5=2 (1,1,1,1,1,1) (1,0,0,0,0,1) 4S 4X 512
    f6=2 (1,1,1,1,0,1) (1,1,1,0,0,1) 4T 4Y 512
    2I 16 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2U 4Z 2048
    f2=1 (0,1,1,1,0,1) (0,0,0,0,0,0) 2V 4AA 2048
    f3=2 (0,1,1,1,1,1) (1,0,1,1,1,0) 4U 2P 1024
    f4=2 (1,1,1,1,1,1) (1,0,1,1,1,0) 2W 4AB 1024
    f5=2 (1,1,1,1,0,1) (0,0,0,0,0,0) 4V 2Q 1024
    f6=4 (1,1,1,1,0,0) (1,1,0,1,0,0) 4W 4AC 512
    f7=4 (1,0,1,1,1,1) (1,1,0,1,0,0) 4X 4AD 512
    2J 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2X 4AE 1024
    f2=1 (1,1,1,1,0,1) (1,0,1,0,0,1) 4Y 4AF 1024
    f3=1 (1,1,1,0,0,1) (1,0,1,1,1,0) 4Z 2R 1024
    f4=1 (1,1,1,1,1,1) (0,0,0,1,1,1) 4AA 4AG 1024
    f5=2 (1,1,1,1,1,0) (0,1,1,0,1,0) 4AB 4AH 512
    f6=2 (1,1,0,1,1,1) (1,1,0,0,1,1) 4AC 4AI 512
    3A 16 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3A 3A 2304
    f2=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 6A 6A 2304
    f3=6 (0,0,0,1,0,0) (0,0,0,0,1,1) 6B 6B 384
    f4=8 (0,0,0,0,0,1) (0,0,0,0,0,1) 6C 6C 288
    3B 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3B 3B 144
    f2=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 6D 6D 144
    f3=2 (1,0,0,0,0,0) (1,0,0,0,0,0) 6E 6E 72
    4A 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AD 8A 1536
    f2=3 (1,0,0,0,0,1) (0,0,0,0,0,0) 4AE 8B 512
    f3=4 (1,0,0,0,0,0) (0,0,0,0,0,0) 8A 4AJ 384
    4B 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AF 8C 1536
    f2=3 (0,1,0,0,0,0) (0,0,0,0,0,0) 4AG 8D 512
    f3=4 (1,0,0,0,0,0) (1,0,1,0,0,1) 8B 4AK 384
    4C 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AH 4AL 512
    f2=1 (1,0,0,1,0,0) (0,0,0,0,0,0) 4AI 4AM 512
    f3=2 (1,0,0,0,0,0) (0,0,0,0,0,0) 4AJ 4AN 256
    4D 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AK 4AO 512
    f2=1 (1,0,0,1,0,0) (0,0,0,0,0,0) 4AL 4AP 512
    f3=2 (0,0,1,0,0,1) (0,0,0,0,0,0) 4AM 4AQ 256
    4E 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4A 4AR 256
    f2=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 4AO 4AS 256
    f3=1 (1,0,0,0,0,1) (0,0,0,0,0,0) 4AP 4AT 256
    f4=1 (1,0,0,0,1,0) (0,0,0,0,0,0) 4AQ 4AU 256
    4F 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AR 8E 128
    f2=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 8C 4AV 128
    f3=1 (0,1,0,0,0,0) (1,0,1,1,1,0) 8D 4AW 128
    f4=1 (1,1,0,0,0,0) (1,0,1,1,1,0) 4AS 8F 128
    4G 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AT 8G 128
    f2=1 (0,0,0,1,1,0) (1,0,1,0,0,1) 8E 4AX 128
    f3=1 (1,1,0,0,0,1) (0,0,0,0,0,0) 4AU 8H 128
    f4=1 (1,1,0,1,1,1) (1,0,1,0,0,1) 8F 4AY 128
    4H 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AV 8I 128
    f2=1 (1,0,0,0,1,0) (1,0,1,0,1,1) 4AW 8J 128
    f3=1 (0,1,0,0,0,1) (0,0,0,0,0,0) 8G 4AZ 128
    f4=1 (1,1,0,0,1,1) (1,0,1,0,1,1) 8H 4BA 128
    4I 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AX 8K 256
    f2=1 (1,0,1,0,0,1) (0,0,0,0,0,0) 4AY 8L 256
    f3=2 (1,0,0,0,1,0) (1,0,1,0,1,1) 4AZ 8M 128
    f4=2 (1,1,0,0,0,0) (0,0,0,0,0,0) 8I 4BB 128
    f5=2 (1,1,0,0,1,1) (0,0,1,0,0,0) 8J 4BC 128
    4J 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4BA 8N 256
    f2=1 (1,0,1,1,1,0) (0,0,0,0,0,0) 4BB 8O 256
    f3=2 (1,0,0,0,0,0) (0,0,0,1,1,1) 4BC 8P 128
    f4=2 (1,1,1,1,0,0,1) (0,0,0,1,1,1) 8K 4BD 128
    f5=2 (1,1,0,0,1,1) (0,0,0,0,0,0) 8L 4BE 128
    5A 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 5A 5A 40
    f2=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 10A 10A 40
    f3=2 (1,0,0,0,0,0) (1,1,0,0,0,0) 10B 10B 20
    6A 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6F 12A 1152
    f2=3 (1,1,0,0,0,1) (0,0,0,0,0,0) 6G 12B 384
    f3=4 (1,0,0,0,0,0) (1,0,1,0,0,1) 12A 6F 288
    6B 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6H 6G 192
    f2=1 (1,0,1,0,1,1) (1,0,1,0,0,1) 12B 12C 192
    f3=2 (1,0,1,1,0,1) (0,1,1,0,0,0) 12C 12D 96
    6C 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6I 12E 192
    f2=1 (1,0,1,0,1,1) (1,0,1,0,0,1) 12D 6H 192
    f3=2 (1,0,1,1,1,1) (0,1,1,0,1,0) 12E 12F 96
    6D 2 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6J 12G 72
    f2=1 (0,0,1,0,0,1) (0,0,1,0,0,1) 12F 6I 72
    6E 8 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6K 12H 192
    f2=1 (1,0,1,0,0,1) (0,0,0,0,0,0) 6L 12I 192
    f3=2 (1,0,0,0,0,0) (0,0,0,0,0,0) 6M 12J 96
    f4=2 (1,0,1,0,1,1) (0,1,1,0,0,0) 12G 6J 96
    f5=2 (1,0,0,0,1,0) (0,1,1,0,0,0) 12H 6K 96
    6F 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6N 12K 96
    f2=1 (1,0,0,0,0,0) (0,1,1,0,0,0) 12I 6L 96
    f3=1 (1,0,1,0,1,1) (1,1,0,0,0,1) 12J 12L 96
    f4=1 (1,0,0,0,1,0) (1,0,1,0,0,1) 12K 12M 96
    6G 2 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6O 12N 24
    f2=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 12L 6M 24
    6H 4 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6P 6N 48
    f2=1 (1,1,1,0,1,1) (0,0,0,0,0,0) 6Q 6O 48
    f3=2 (1,0,0,0,0,0) (0,0,0,0,0,0) 6R 6P 24
    8A 2 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 8M 8Q 32
    f2=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 8N 8R 32
    8B 2 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 8O 8S 32
    f2=1 (1,0,0,0,0,0) (1,0,0,0,0,0) 8P 8T 32
    10A 2 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 10C 20A 20
    f2=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 20A 10C 20
    12A 2 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 12M 24A 48
    f2=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 24A 12O 48
    12B 2 f1=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 12N 24B 48
    f2=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 24B 12P 48

     | Show Table
    DownLoad: CSV

    By restricting some ordinary characters of ¯G3 to ¯G and also computing the structure constants (using GAP) for the set Irr(¯G), we ensure that the consistency checks of Programme E [22] for the set Irr(¯G) are satisfied. The information about the conjugacy classes found in Table 5 can be used to compute the power maps for the elements of ¯G and Programme E is used to confirm that the character table of ¯G produces the unique p-powers listed in Table 6.

    Table 6.  The power maps of the elements of 26(25:S6).
    [g]G [x]¯G 2 3 5 [g]G [x]¯G 2 3 5 [g]G [x]¯G 2 3 5 [g]G [x]¯G 2 3 5
    1A 1A 2A 4A 2A 4F 8E 4F 4G 8G 4AA
    2A 1A 4B 2A 4AV 2G 4AX 2Q
    2B 1A 2D 1A 4AW 2G 8H 4Z
    2C 1A 8F 4E 4AY 2Q
    2B 2E 1A 2C 4E 2A 4H 8I 4AA 4I 8K 4Z
    2F 1A 4F 2A 8J 4Z 8L 4Z
    4C 2A 2G 1A 4AZ 2Q 8M 4Z
    4D 2B 4G 2B 4BA 2Q 4BB 2Q
    4BC 2Q
    2D 4H 2B 2E 4L 2B 4J 8N 4Z 5A 5A 1A
    4I 2B 4M 2B 8O 4Z 10A 5A 2A
    4J 2B 4N 2B 8P 4Z 10B 5A 2C
    4K 2A 4O 2B 4BD 2Q
    2H 1A 2I 1A 4BE 2Q
    2J 1A
    2F 2K 1A 2G 4R 2A 6A 12A 6A 4A 6B 6G 3A 2E
    2L 1A 2N 1A 12B 6A 4B 12C 6A 4C
    2M 1A 4S 2B 6F 3A 2D 12D 6B 4D
    4P 2B 4T 2B
    4Q 2B
    2H 4U 2B 2I 4Z 2B 6C 12E 6A 4E 6D 12G 6D 4A
    4V 2B 4AA 2B 6H 3A 2G 6I 3B 2D
    4W 2A 2P 1A 12F 6B 4G
    2O 1A 4AB 2B
    4X 2B 2Q 1A
    4Y 2B 4AC 2B
    4AD 2B
    2J 4AE 2B 3A 3A 1A 6E 12H 6B 4L 6F 12K 6B 4H
    4AF 2A 6A 3A 2A 12I 6B 4M 6L 3A 2H
    2R 1A 6B 3A 2B 12J 6B 4O 12L 6B 4J
    4AG 2B 6C 3A 2C 6J 3A 2I 12M 6A 4K
    4AH 2B 6K 3A 2J
    4AI 2B
    3B 3B 1A 4A 8A 4E 6G 12N 6D 4R 6H 6N 3B 2K
    6D 3B 2A 8B 4E 6M 3B 2N 6O 3B 2L
    6E 3B 2C 4AJ 2G 6P 3B 2M
    4B 8C 4E 4C 4AL 2E 8A 8Q 4AL 8B 8S 4AO
    8D 4E 4AM 2F 8R 4AM 8T 4AP
    4AK 2G 4AN 2F
    4D 4AO 2E 4E 4AR 2E 10A 20A 10A 4A 12A 24A 12E 8A
    4AP 2F 4AS 2F 10C 5A 2D 12O 6H 4AJ
    4AQ 2F 4AT 2F
    4AU 2F
    12B 24B 12E 8C
    12P 6H 4AK

     | Show Table
    DownLoad: CSV

    By making use of the values of ϕ1, ϕ2, ϕ3 and ϕ4 on the classes of 26Sp6(2), the values of (ϕ1)26(25S6), (ϕ2)26(25:S6)), (ϕ3)26(25:S6) and (ϕ4)26(25:S6) on the classes of 26(25:S6), Table 4 and the permutation character χ(26Sp6(2)|26(25:S6)) = 1a+27a+35a of degree 63 of 26Sp6(2) acting on 26(25:S6), the complete fusion map of 26(25:S6) into 26Sp6(2) is computed and is given in Table 7.

    Table 7.  The fusion of 26(25:S6) into 26Sp6(2).
    [g](25:S6) [x]26(25:S6) [y]26Sp6(2) [g](25:S6) [x]26(25:S6) [y]26Sp6(2)
    1A 1A 1A 2A 4A 4A
    2A 2A 4B 4B
    2B 2A 2D 2B
    2C 2A
    2B 2E 2C 2C 4E 4D
    2F 2D 4F 4E
    4C 4C 2G 2E
    4D 4C 4G 4F
    2D 4H 4D 2E 4L 4A
    4I 4E 4M 4B
    4J 4E 4N 4B
    4K 4F 4O 4B
    2H 2E 2I 2B
    2J 2B
    2F 2K 2C 2G 4R 4G
    2L 2D 2N 2F
    2M 2D 4S 4H
    4P 4C 4T 4I
    4Q 4C
    2H 4U 4G 2I 4Z 4D
    4V 4H 4AA 4E
    4W 4I 2P 2E
    2O 2F 4AB 4E
    4X 4H 2Q 2E
    4Y 4I 4AC 4F
    4AD 4F
    2J 4AE 4G 3A 3A 3A
    4AF 4H 6A 6A
    2R 2F 6B 6A
    4AG 4I 6C 6A
    4AH 4I
    4AI 4H
    3B 3B 3C 4A 8A 8A
    6D 6B 8B 8B
    6E 6B 4AJ 4L
    4B 8C 8C 4C 4AL 4N
    8D 8D 4AM 4O
    4AK 4M 4AN 4P
    4D 4AO 4J 4E 4AR 4N
    4AP 4K 4AS 4O
    4AQ 4K 4AT 4P
    4AU 4P
    4F 8E 8E 4G 8G 8E
    4AV 4R 4AX 4R
    4AW 4Q 8H 8F
    8F 8F 4AY 4Q
    4H 8I 8E 4I 8K 8A
    8J 8F 8L 8B
    4AZ 4Q 8M 8B
    4BA 4R 4BB 4L
    4BC 4L
    4J 8N 8C 5A 5A 5A
    8O 8D 10A 10A
    8P 8D 10B 10A
    4BD 4M
    4BE 4M
    6A 12A 12A 6B 6G 6D
    12B 12B 12C 12C
    6F 6C 12D 12C
    6C 12E 12D 6D 12G 12F
    6H 6F 6I 6G
    12F 12R
    6E 12H 12A 6F 12K 12D
    12I 12B 6L 6F
    12J 12B 12L 12E
    6J 6C 12M 12E
    6K 6C
    6G 12N 12G 6H 6N 6H
    6M 6J 6O 6I
    6P 6I
    8A 8Q 8G 8B 8S 8I
    8R 8H 8T 8J
    10A 20A 20A 12A 24A 24A
    10C 10B 12O 12H
    12B 24B 24B
    12P 12I

     | Show Table
    DownLoad: CSV

    The Department of Mathematics and Physics at Cape Peninsula University of Technology is acknowledge for the time and space provided for the author to complete the research article. I am most grateful to my Lord Jesus Christ.

    The author declares that there is no conflict of interest regarding the publication of this paper.



    [1] F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi'24, Representation Theory of the American Mathematical Society, 7 (2003), 300-321. doi: 10.1090/S1088-4165-03-00175-4
    [2] A. B. M. Basheer and J. Moori,On the non-split extension group 26·Sp6(2), B. Iran. Math. Soc., 39 (2013), 1189-1212.
    [3] A. B. M. Basheer and J. Moori, A survey on Clifford-Fischer theory, London Mathematical Society Lecture Notes Series, 422 (2015), 160-172.
    [4] A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012.
    [5] W. Bosma and J. J. Canon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.
    [6] J. H. Conway, R. T. Curtis, S. P. Norton, et al. Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
    [7] U. Dempwolff, Extensions of elementary abelian groups of order 22n byS 2n(2) and the degree 2-cohomology of S2n(2), Illinois J. Math., 18 (1974), 451-468
    [8] B. Fischer, Clifford-matrices, Representation Theory of Finite Groups and Finite-Dimensional Algebras, Birkhauser, Basel, 1991.
    [9] R. L. Fray and A. L. Prins, On the inertia groups of the maximal subgroup 27:SP(6, 2) in Aut(Fi22), Quaest. Math., 38 (2015), 83-102.
    [10] D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.
    [11] G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, North-Holland Mathematics Studies, 175 (1992), 1-13.
    [12] A. L. Prins and R. L. Monaledi, Fischer-Clifford Matrices and Character Table of the Maximal Subgroup of (29:L3(4)):2 of U6(2):2, International Journal of Mathematics and Mathematical Sciences, 2019 (2019), 1-17.
    [13] R. L. Monaledi, Character Tables of Some Selected Groups of Extension Type Using FischerClifford Matrices, M.Sc Thesis, University of the Western Cape, Bellville, 2015.
    [14] J. Moori, On certain groups associated with the smallest Fischer group, J. Lond. Math. Soc., 2 (1981), 61-67.
    [15] J. Moori, On the Groups G+ and ¯G of the forms 210:M22 and 210:¯M22, PhD thesis, University of Birmingham, 1975.
    [16] J. Moori and Z. E. Mpono, The Fischer-Clifford matrices of the group 26:SP6(2), Quaest. Math., 22 (1999), 257-298
    [17] J. Moori and T. T. Seretlo, On 2 non-split extensions groups associated with HS and HS:2, Turkish J. Math., 38 (2014), 60-78.
    [18] J. Moori and T. T. Seretlo, On Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly, B. Iran. Math. Soc., 39 (2013), 1037-1052.
    [19] A. L. Prins, The character table of an involution centralizer in the Dempwolff group 25·GL5(2), Quaest. Math., 39 (2016), 561-576.
    [20] A. L. Prins and R. L. Fray, The Fischer-Clifford matrices of an extension group of the form 27:(25:S6), Int. J. Group Theory, 3 (2014), 21-39.
    [21] The GAP Group, GAP--Groups, Algorithms, and Programming, Version 4.6.3, 2013. Available from:
    http://www.gap-system.org.
    [22] T. T. Seretlo, Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups O+10(2), HS and Ly, PhD Thesis, University of KwaZulu Natal, 2011.
  • This article has been cited by:

    1. Abraham Love Prins, On the Fischer matrices of a group of shape 21+2n + :G, 2023, 56, 2357-4100, 189, 10.15446/recolma.v56n2.108379
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3547) PDF downloads(295) Cited by(1)

Figures and Tables

Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog