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1. Introduction

In the papers [2] and [16], the character tables of the non-split extension G3 = 2°S pe(2) and split
extension 2°:S pg(2) were successfully computed by the method of Fischer-Clifford matrices [8]. In the
ATLAS [6] we found that Np,,,(2°) = 26:S pe(2) is a maximal subgroup of the smallest Fischer sporadic
simple group Fi,, of index 694980. Here the elementary abelian group 2 is a pure 2B-group, where
2B denotes a class of involutions in Fiy. Dempwolff in [7] proved that a unique non-split extension
(up to isomorphism) of the form G, =28 P2,(2) does exist for all n > 2, where G,/2" =S P2.(2) acts
faithfully on 22", In [2] it was noted that 25:S ps(2) and G; give rise to the same character table. The
groups 2°:S pe(2) and G5 have subgroups of types M; = 2%:(2°:S¢) and G = 2°(2°:S), where M, and
G are pre-images of a maximal subgroup 2°:S of index 63 in S ps(2), under the natural epimorphism
modulo 2°.

In this paper, it will be shown that the character tables of M; and G coincide and how the conjugacy
classes of G can be obtained from the classes of M, by “restricting” characters of G (see Section 5 of
this paper) to characters of M;. In this regard, the format of the character tables of M, and G5 (see [2]
and [13]) which were obtained by the method of Fischer-Clifford matrices, plays an important role.
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The power maps of G and the fusion map of G into G are also computed. Most of our computations
are done in the computer algebra systems MAGMA [5] and GAP [21]. For concepts and definitions
used in this paper, the readers are referred to the review paper on Fischer-Clifford theory [3] and
[1,11,12,17-19].

2. Theory of Fischer-Clifford matrices

Since the ordinary character tables of the groups 2°:S ps(2), G5, M, and G have been computed
by the technique of Fischer-Clifford matrices, a brief theoretical background of this technique will be
given in this section. In Section 4, it will be shown that only the ordinary irreducible characters of the
inertia factors will be used in the construction of the character table of G. Therefore, only the case
where every irreducible character of N can be extended to its inertia group in the extension group N.G
will be discussed. Here the author will follow closely the work of the authors in [16].

Let G = N.G be an extension of N by G and 6 € Irr(N), where Irr(N) denotes the irreducible

charzfters of N. Define 6% by 64(n) = G(gng‘l)ior g € G,n e Nand & € Irr_(N). Let H =
{x € Gl#" = 6)} = I5(0) be the inertia group of 6 in G. We say that 6 is extendible to H if there exists

¢ € Irr(H) such that ¢ | y= 6. If 8 is extendible to H, then by Gallagher [11], we have
by € Irr(H). < y 1.0 ># 0} = |BgIB € Irr(H/N)).

Let G have the property that every irreducible character of N _can be extended to its inertia group.
Now let 6, = 1y,6,,---,0, be representatives of the orbits of G on Irr(N), H; = Iz(¢;), 1 < i < t,
¢; € Irr(H;) be an extension of §; to H; and 8 € Irr(H;) such that N C ker(8). Then

t

1rr(G) = |_JIB¢)° 1B € Irr(H)), N < ker(®)) = |_J(B )% 18 € Irr(H;/N))
i=1

i=1 i

Hence the irreducible characters of G will be divided into blocks, where each block corresponds to an
inertia group H;.

Let H; be the inertia factor group and ¢; be an extension of 6; to H.. Take 6, = ly as the identity
character of N, then H, = G and H, = G. Let X(g) = {x1, X2, - , Xo(g)} be a set of representatives of the
conjugacy classes of G from the coset Ng whose images under the natural homomorphism G — G
are in the class [g] of G and we take x; = g. We define

R(@) ={,y) |l <i<t, HiN[gl#0,1 <k<r},

where y, runs over representatives of the conjugacy classes of elements of H; which fuse into [g]. Let
{v;.} be the representatives of conjugacy classes of H; which contain liftings of y, under the natural
homomorphism H; — H;. Then we define the Fischer-Clifford matrix M(g) by M(g) = (afl.’yk)), where

J G\""J
a - (pi() )7
(@yx) zl : |CH,(ylk)| I

with columns indexed by X(g) and rows indexed by R(g) and where >, is the summation over all / for
which y;, ~ x; in G. Then the partial character table of G on the classes {x;, X2, -+ , Xy} 1S given by
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Ci(g) Mi(g) M (g)
Ca(g) Mx(g) M>(g)

28 28| U here the Fischer-Clifford matrix M(g) = | . | is divided into blocks M;(g) with
Ci(g) M(g) M(g)

each block corresponding to an inertia group H; and C;(g) is the partial character table of H; consisting
of the columns corresponding to the classes that fuse into [g]. Hence the full character table of G will be
Ay

A
* |, where A; = [C(HM(D)ICi(g2)Mi(g2)I...|Ci(gr)Mi(gi)] with {1, g1, g2, ..., g} the representatives

A
of conjugacy classes of G. We can also observe that \Irr(G)| = |Irr(H))| + [Irr(Hy)| +...+ |[rr(H,)|.

3. The action of G on N and Irr(N)

The group G3 = 2°'S pe(2) was constructed in [2] as a permutation group on 128 points and it was
shown that G has an inertia group G = 2°(2°:S¢) which belongs to a non-split extension of a reducible
module of dimension 6 over GF(2) for the maximal subgroup 2°:S4 of S pe(2). Using the generators
of G5 given in [2], the group G is constructed as the centralizer C5,(2A) of the class of involutions 24
within G;.

Let G = 2°(2°:S,) be the non-split extension of N = 2° by G = 2°:S¢. The group 2°:S, is the
stabilizer of a vector in the action of S ps(2) on its natural 6-dimensional module 2°. This action is the
same in both the split and non-split extensions 2°:S ps(2) and G;. This immediately defines the action
of 2°:S ¢ on the module 2°. Note that the action of the split extension M; = 2°:(2°:S¢) on 26 is the same
as the action of 2°:S¢ on 2. The group G can be constructed as a matrix group of dimension 6 over
the finite field GF(2) within S ps(2). Now with the action of G on N = 2°, where we view N as the
vector space of dimension six over GF(2), we will obtain four orbits of lengths 1, 1, 30 and 32 with
corresponding point stabilizers G, G, 2*:S 5 and S ¢, respectively. By Brauer’s Theorem [10] the action
of G on Irr(N) will also produce 4 orbits and since the action is self-dual, the orbit lengths will be
1, 1,30 and 32 with corresponding inertia factor groups H; = H, = G, H3 = 2*:Ssand Hy = S,.

4. The ordinary character table of G = 2°(2°:5¢)

Having obtained the inertia factors H; = H, = G, H3 = 2*:S5 and H, = S for the action of G on
Irr(N), we can formed the Fischer-Clifford matrix M(1A) corresponding to the identity coset N1z = N
as follows:

1474560 1474560 49152 46080
23040 1 1 1 1
23040 1 1 1 -1
768 30 30 -2 0
720 32 =32 0 0
1 1 30 32

M(14) =

The column weight_s above the matrix M(1A) are the centralizer ordgs |C5(2)l of the classes
1A,2A,2B and 2C of G (see Table 5) coming from the identity coset N(1A) = N by means of the
technique of coset-analysis (see [14], [15] and [16]). Whereas, the row weights to the left of the
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matrix M(1A) represent the centralizer orders |Cy,(1A)| of the inertia factors H; on the identity
element 1A.

Table 1. The partial character table of G for coset N.

glg 1A 2A 2B 2C
i 1 1 1 1
X38 a a a a
X384, 30b 30b 2b 0
X38etr41, 32¢ 32¢ 0 0

Table 1 is the partial ordinary character table of G on the classes 14, 24, 2B and 2C of G, where each
of the 4 lines of Table 1 corresponds to the first row of entries of the sub-matrices C;(1A)M;(1A),i =
1,2,3,4. M;(1A) and C;(1A) correspond to the rows of the Fischer-Clifford matrix M(1A) and columns
of the projective character tables of the inertia factors H;, respectively, which are associated with the
classes [1A]y, of the inertia factors H; which fuse into the class [1A]g of G. Also, note that the character
values in the 1st column of Table 1 are the degrees of the ordinary irreducible characters x1, x'33, 38+,
and Y3841+, Of G. The characters X1,X38, X38+r, and X3s4r,+1, OCcupy the first position for each block
of characters coming from an inertia subgroup H; of G, where 37,, and #; represent the number
|IrrPro j(H;, ;)| of irreducible projective characters with associated factor set «; for the inertia factors
H,, H, and Hj, respectively. Now deg(n;) = 1,deg(¢1) = a,deg(y1) = b and deg(y,) = c are the
degrees of the irreducible projective characters 15, ¢, ¥, and y, which occupy the first position in
each set IrrProj(H;, a;), i = 1,2, ...,4, respectively.

We copy a small part of the ordinary character table of 2 ps(2) (see Table 11.12 in [4]), containing
the values of the character 63a on the classes 14, 2A:

gl [ 1A 2A
63a 63 -1

Now the classes 14, 2A,2B and 2C of G consist of the elements of N (see Table 5). If we decompose
(63a)y into the the set Irr(N) and also notice that < (63a)y, 1y > = 0, then (63a)y = alyss)y +
b(x38+1,)n + c(X38+1,+1;)n, Where a, b and ¢ are defined as above. If we take into account the fusion
of the classes 14, 2A,2B and 2C of G into the classes of 14 and 24 of G_3, and the decomposition of
(63a)y into the set Irr(N), then the following set of equations (by restricting the character values of
63a to Table 1) is obtained:

1. (63a)y(1A) = a+30b + 32¢ = 63
2. (63a)n(2A) = a +30b —32¢ = -1
3. (63a)y(2B) =a—-2b =-1

4. (63a)y(2C) = —a = -1

Solving the above equations simultaneously, we obtain thata = b = 1 = ¢ = 1 and hence deg(¢,) =
deg(yy) = deg(y;) = 1. We can conclude that only the ordinary irreducible characters tables of the
inertia factors H; will be involved in the construction of the ordinary character table of 2°(2°:S). This
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means that the ordinary irreducible characters of the _split extension M; = 2°:(23:S¢) (Table 9.7 in [13])
are the same as the ones for the non-split extension G, but the class orders of the two groups will differ
as it will be shown in Section 5.

5. The conjugacy classes of G

In this section, we will compute the order of an element g in a conjugacy class [g]z of G from
the conjugacy classes and ordinary irreducible characters of both M, and G5. For both G and M, the
centralizer orders for each class of elements coming from a corresponding coset Ng, g € 2°:S ¢, will be
the same, but their class orders may be different. The method of coset-analysis was used to compute
the conjugacy classes of elements of 2%:(2°:S¢) (see Table 5) and G5 (Table 1 in [2]). Let G = N.G be
an extension of N by G, where N is abelian. Then for g € G, we write g for a lifting of g in G under
the natural homomorphism G — G. We consider a coset Ng for each class representative g of G,
writing k for number of orbits of N acting by conjugation on the coset Ng, and f; for the numbers of

these fused by the action of {E the CG(g)}. Note if G is a split extension then g becomes g. The order

of the centralizer Cg(x) for each element x € Gina conjugacy class [x]z is given by |Cz(x)| = @

For example, let consider the classes of M; = 26:(25:S4) obtained from the cosets N(2A) and
N(2E) (see Table 3), where 2A and 2E are classes of involutions in 23:S¢. In addition, we consider
also the partial character table of M; corresponding to the cosets N(2A) and N(2E) (see [13]), which
was computed by the technique of Fischer-Clifford matrices. We obtained also from [13] that
(P1 = 03a)2s.25.56) = X38 + X75 + X127, (P2 = 03b)2s.25:56) = X39 + X76 + X1285 ($3 = 315a)6.25.5) =
Xa3 + X86 + Xo4 + X132 and (¢4 = 315D)26.(25.54) = Xa0 + X75 + X80 + Xo4 + X130, Where @1, ¢, ¢3 and ¢4
are ordinary irreducible characters of 2°%:S ps(2) of degrees 63 and 315 which are restricted to
irreducible characters of M, by the technique of set intersection (see [9, 14, 16]).

From Table 4 we notice that classes 2A and 2E of 2°:S¢ are fusing into the class 2A of S ps(2).
Hence the classes of G, which will be obtained from the cosets N(2A4) and N(2E) using coset analysis,
will fuse into the classes of G lying above the class 2A of S ps(2). Since the character tables of G and
M, coincide, the corresponding cosets N (ﬂ) and N (ﬁ) for both of the groups will produce the same
number of classes and share the same class centralizer orders and partial character tables. Also G5 and
29:S pe(2) share the same character table and therefore we can expect that the irreducible character y3,
of degree 63 of G5 (see Table 2) will restrict to the same irreducible characters as above-mentioned
character ¢, = 63b.

Suppose that Table 3 is the partial character table of G corresponding to the cosets N, N(24) and
N(2E) and irreducible characters of degrees 1, 30 and 32. Now the ordinary character y3, of G5 in Table
2 will restrict to the sum of the irreducible characters y39, y76 and y,g of G in Table 3. If the character
values of y3, on the classes 4A, 4B and 2B coming from the coset N (ﬂ) in Table 2 and the character
values of the restricted character (y32)z = X309 +X76 + X128 On the classes 2D, 2E,4A,2L,2M, 2N, 20, 41
and 4J coming from the cosets N(2A) and N(2E) in Table 3 are taking into consideration, then the
class orders of 2D,2E,2L,2M,2N and 20 are forced to change from order 2 to order 4 whereas the
class orders of 4A, 41 and 4J are forced to change from order 4 to order 2. Hence we obtained the
classes of G, with their respective class orders and centralizer orders (see Table 5), associated with the
cosets N(2A) and N(2E). In a similar fashion, we obtained all the classes of G, with their class and
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centralizer orders, using the above restricted characters ¢, ¢,, ¢3 and ¢, together with the ordinary
character tables of G; and M. See Table 5 where all the information concerning the conjugacy classes
of M, and G are listed. For the explanation of the parameters used in Table 5 the readers are referred
to [16] and [20].

Table 2. The partial character table of G;=2°S§ Pe(2).

[glsps2) 1A 2A
[g] 26 pe(2) 1A 2A 4A 4B 2B
X32 63 -1 -29 3 -1

Table 3. The partial character table of M, = 2°:(2%:S¢).

[2s:s, 1A 2A 2E
[8]26:2%:5) 1A 2A 2B 2C|2D 2E 4A | 2L 2M 2N 20 41 4]
X3 1 1 1 -1 1t 1 -1| -1 -1 -1 1 1 -1

X76 30 30 -2 0[-30 2 0|-12 -12 4 2 2

X128 32 32 0 0| 0 0O O0|-16 16 0 0 0
Yo +txmwtyxms | 63 -1 -1 1129 3 -1]-29 3 3 3 -1 -l

Table 4. The fusion of 2°:S4 into S p(6, 2).

[Alss, —  [8lspe2) | [hlssg —  [8lspe) | [hlassy —  [8lspe2) | [hlssg —  [8lspe)
1A 1A 2J 2D 4G 4E 6E 6B
2A 2A 3A 3A 4H 4F 6F 6D
2B 2B 3B 3C 41 4B 6G 6G
2C 2C 4A 4B 4] 4C 6H 6F
2D 2C 4B 4Cc 5A 5A 8A 8A
2E 2A 4C 4D 6A 6B 8B 8B
2F 2B 4D 4A 6B 6A 10A 10A
2G 2D 4F 4D 6C 6D 12A 12A
2H 2D 4F 4F 6D 6F 12B 12B
21 2C
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Table 5. The conjugacy classes of elements of the groups M, and G.

18555, k fi dj w [81m, [gls |Cuy (@) and |C5 ()]
1A 64 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 14 14 1474560
h=1 (1,0,1,0,0, 1) (1,0,1,0,0,1) 24 24 1474560
f3=30 (0,1,0,0,0,0) (0,1,0,0,0,0) 2B 2B 49152
fa=32 (1,0,0,0,0,0) (1,0,0,0,0,0) 2C 2C 46080
24 32 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2D 4A 737280
fHh=15 (0,1,0,0,0,0) (0,0,0,0,0,0) 2F 4B 49152
=16 (1,0,0,0,0,0) (1,0,1,0,0,0) 4A 2D 46080
2B 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2F 2F 24576
H=3 (1,1,1,1,1,0) (0,0,0,0,0,0) 2G 2F 8192
=4 0,0,0,1,1,1) (1,0,1,0,0, 1) 4B 4c 6144
f1=8 (1,0,0,0,0,0) (0,1,0,0,1,0) ac 4D 3072
2C 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2H 4E 24576
H=3 (0,1,0,0,0,0) (0,0,0,0,0,0) 21 4F 8192
=4 (1,1,0,0,1,1) (1,0,1,0,0,1) 4D 2G 6144
f1=8 (1,0,0,0,0,0) 0,1,1,0,0,0) 4E 4G 3072
2D 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2J 4H 12288
H=3 (1,0,0,0,0, 1) (0,0,0,0,0,0) 2K 41 4096
f= (1,0,0,0,0,0) 0,1,1,0,0,0) 4F 47 3072
fi= 1,1,1,1,0,0) (1,1,0,0,0,1) 4G 4K 3072
fs=4 (1,0,1,0,1,0) (1,0,1,0,0, 1) 4H 2H 3072
2E 32 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2L 4L 24576
fH=1 (1,1,0,0,0, 1) (0,0,0,0,0,0) oM am 24576
=6 (1,0,0,0,0, 1) (0,0,0,0,0,0) 2N AN 4096
f1=8 (1,1,0,0,1,1) 0,1,1,0,0,0) 20 40 3072
f5=8 0,1,0,0,1,1) 0,1,1,0,0,0) 41 21 3072
fo=8 (0,1,0,0,0, 1) (0,0,0,0,0,0) 4 2J 3072
2F 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2P 2K 6144
H=1 1,1,1,1,1,0) (0,0,0,0,0,0) 20 2L 6144
=2 1,1,1,1,0,1) (0,0,0,0,0,0) 2R 2M 3072
fa=6 (1,1,1,1,1,1) (0,0,0,1,0,1) 4K 4p 1024
fs=6 0,1,1,1,1,1) (1,1,1,0,1,1) 4L 40 1024
2G 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2§ 4R 3072
H=1 (1,0,0,1,1,1) (1,0,1,0,0, 1) am 2N 3072
=3 1,1,1,1,1,1) 1,1,1,1,1,0) AN 48 1024
fa=3 (1,1,1,1,0,0) (1,0,1,1,0,0) 40 AT 1024
2H 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2T 4U 1024
H=1 1,1,1,0,1,1) (1,0,0,0,0,1) 4p 4v 1024
=1 (1,1,1,1,0,0) (1,1,0,0,0, 1) 40 aw 1024
fa=1 (1,1,1,1,1,0) (1,0,1,0,0,1) 4R 20 1024
f5=2 (1,1,1,1,1,1) (1,0,0,0,0, 1) 48 4x 512
fs=2 1,1,1,1,0,1) (1,1,1,0,0,1) AT 4y 512
21 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2U 47 2048
H=1 0,1,1,1,0,1) (0,0,0,0,0,0) 2v 4AA 2048
=2 0,1,1,1,1,1) (1,0,1,1,1,0) 4U 2P 1024
fa= (1,1,1,1,1,1) (1,0,1,1,1,0) 2w 4AB 1024
f5= (1,1,1,1,0,1) (0,0,0,0,0,0) 4y 20 1024
fo = (1,1,1,1,0,0) (1,1,0,1,0,0) 4w 4AC 512
fr=4 1,0,1,1,1,1) (1,1,0,1,0,0) 4x 4AD 512
2J 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2X 4AE 1024
h=1 1,1,1,1,0,1) (1,0,1,0,0, 1) 4y 4AF 1024
f=1 (1,1,1,0,0,1) (1,0,1,1,1,0) 4z 2R 1024
fa=1 (1,1,1,1,1,1) 0,0,0,1,1,1) 4AA 4AG 1024
f5=2 1,1,1,1,1,0) 0,1,1,0,1,0) 4AB 4AH 512
fo=2 (1,1,0,1,1,1) (1,1,0,0,1,1) 4AC 4A1 512
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Table 5 (continued)

[8ly5.5, k fi dj w [81am, [glg [Cy, (@)l and |C5()
3A 16 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 34 3A 2304
fHh=1 (1,0,1,0,0,1) (1,0,1,0,0,1) 6A 6A 2304
fr=6 (0,0,0,1,0,0) (0,0,0,0,1,1) 6B 6B 384
f1=8 (0,0,0,0,0, 1) (0,0,0,0,0, 1) 6C 6C 288
3B 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3B 3B 144
f=1 (1,0,1,0,0,1) (1,0,1,0,0, 1) 6D 6D 144
fr=2 (1,0,0,0,0,0) (1,0,0,0,0,0) 6E 6E 72
4A 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AD 8A 1536
fr=3 (1,0,0,0,0, 1) (0,0,0,0,0,0) 4AE 8B 512
fr=4 (1,0,0,0,0,0) (0,0,0,0,0,0) 8A 4AJ] 384
4B 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AF 8C 1536
f=3 0,1,0,0,0,0) (0,0,0,0,0,0) 4AG 8D 512
fr=4 (1,0,0,0,0,0) (1,0,1,0,0, 1) 8B 4AK 384
4c 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AH 4AL 512
f=1 (1,0,0,1,0,0) (0,0,0,0,0,0) 4A1 4AM 512
fr=2 (1,0,0,0,0,0) (0,0,0,0,0,0) 4AJ 4AN 256
4D 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AK 4A0 512
fH=1 (1,0,0,1,0,0) (0,0,0,0,0,0) 4AL 4AP 512
fr=2 0,0,1,0,0, 1) (0,0,0,0,0,0) 4AM 4AQ 256
4E 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4A 4AR 256
pH=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 4A0 4AS 256
fr=1 (1,0,0,0,0, 1) (0,0,0,0,0,0) 4AP 4AT 256
fa=1 (1,0,0,0,1,0) (0,0,0,0,0,0) 4AQ 4AU 256
4F 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AR 8E 128
fHh=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 8C 4AV 128
fr=1 0,1,0,0,0,0) (1,0,1,1,1,0) 8D 4AW 128
fi=1 (1,1,0,0,0,0) (1,0,1,1,1,0) 4AS 8F 128
4G 4 fi=l (0,0,0,0,0,0) (0,0,0,0,0,0) 4AT 8G 128
p= 0,0,0,1,1,0) (1,0,1,0,0, 1) 8E 4AX 128
fr=1 (1,1,0,0,0, 1) (0,0,0,0,0,0) 4AU 8H 128
fa=1 (1,1,0,1,1,1) (1,0,1,0,0,1) 8F 4AY 128
4H 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AV 81 128
f=1 (1,0,0,0,1,0) (1,0,1,0,1,1) 4AW 8J 128
fr=1 0,1,0,0,0,1) (0,0,0,0,0,0) 8G 4AZ 128
fi=1 (1,1,0,0,1,1) (1,0,1,0,1,1) 8H 4BA 128
41 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4AX 8K 256
H=1 (1,0,1,0,0,1) (0,0,0,0,0,0) 4AY 8L 256
fr=2 (1,0,0,0,1,0) (1,0,1,0,1,1) 4AZ 8M 128
fo= (1,1,0,0,0,0) (0,0,0,0,0,0) 81 4BB 128
fs=2 (1,1,0,0,1,1) (0,0,1,0,0,0) 8J 4BC 128
4J 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4BA 8N 256
Hh=1 (1,0,1,1,1,0) (0,0,0,0,0,0) 4BB 80 256
fr=2 (1,0,0,0,0,0) 0,0,0,1,1,1) 4BC 8P 128
fi= (1,1,1,1,0,0,1) 0,0,0,1,1,1) 8K 4BD 128
fs=2 (1,1,0,0,1,1) (0,0,0,0,0,0) 8L 4BE 128
5A 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 5A 5A 40
pH=1 (1,0,1,0,0,1) (1,0,1,0,0, 1) 10A 10A 40
fi= (1,0,0,0,0,0) (1,1,0,0,0,0) 108 108 20
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Table 5 (continued)

81555, k fi dj w [&lm, &g ICh, @ and [C5(R)l
6A 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6F 124 1152
H=3 (1,1,0,0,0,1) (0,0,0,0,0,0) 6G 12B 384
fr=4 (1,0,0,0,0,0) (1,0,1,0,0,1) 124 6F 288
6B 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6H 6G 192
fH=1 (1,0,1,0,1,1) (1,0,1,0,0,1) 12B 12¢ 192
=2 (1,0,1,1,0,1) 0,1,1,0,0,0) 12¢ 12D 96
6C 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 61 12E 192
fH=1 (1,0,1,0,1,1) (1,0,1,0,0, 1) 12D 6H 192
=2 1,0,1,1,1,1) 0,1,1,0,1,0) 12E 12F 96
6D 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6J 12G 7
h=1 (0,0,1,0,0,1) (0,0,1,0,0,1) 12F 61 72
2 8 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6K 12H 192
fH=1 (1,0,1,0,0,1) (0,0,0,0,0,0) 6L 121 192
=2 (1,0,0,0,0,0) (0,0,0,0,0,0) 6M 12J 96
fi=2 (1,0,1,0,1,1) 0,1,1,0,0,0) 12G6 6J 96
f5=2 (1,0,0,0,1,0) 0,1,1,0,0,0) 12H 6K 96
oF 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6N 12K 96
fH=1 (1,0,0,0,0,0) 0,1,1,0,0,0) 121 6L 96
fi=1 (1,0,1,0,1,1) (1,1,0,0,0, 1) 127 12L 96
fa=1 (1,0,0,0,1,0) (1,0,1,0,0,1) 12K 12M 96
6G 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 60 12N 24
H=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 12L 6M 24
6H 4 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6P 6N 48
fH=1 1,1,1,0,1,1) (0,0,0,0,0,0) 60 60 48
=2 (1,0,0,0,0,0) (0,0,0,0,0,0) 6R 6P 24
8A 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 8M 80 32
fH=1 (1,0,0,0,0,0) (0,0,0,0,0,0) 8N 8R 32
8B 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 80 8s 32
f=1 (1,0,0,0,0,0) (1,0,0,0,0,0) 8P 8T 32
104 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 10C 20A 20
fH=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 20A 10C 20
124 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 12M 24A 48
H=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 24A 120 48
12B 2 fi=1 (0,0,0,0,0,0) (0,0,0,0,0,0) 12N 24B 48
fH=1 (1,0,0,0,0,0) (1,0,1,0,0,1) 24B 12P 48

6. The power maps of the elements of 2°:(25:5)

By restricting some ordinary characters of G; to G and also computing the structure constants (using
GAP) for the set Ir(G), we ensure that the consistency checks of Programme E [22] for the set Irr(G)
are satisfied. The information about the conjugacy classes found in Table 5 can be used to compute the
power maps for the elements of G and Programme E is used to confirm that the character table of G
produces the unique p-powers listed in Table 6.
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Table 6. The power maps of the elements of 2°(2%:S).

o 0z 2 3 5|kl g 2 3 gl Dz 2 3 5 [ lele Dl 2 35
1A 1A 2A 4A 2A 4F 8E 4F 4G 8G 4AA
2A 1A 4B 2A 4AV 2G 4AX 20
2B 1A 2D 1A 4AW 2G 8H 4z
2C 1A 8F 4E 4AY 20
2B 2F 1A 2C 4E 2A 4H 81 4AA 4] 8K 47
2F 1A 4F 2A 8J 47 8L 47
4c 2A 2G 1A 4AZ 20 SM 47
4D 2B 4G 2B 4BA 20 4BB 20
4BC 20
2D 4H 2B 2E 4L 2B 4 SN 47 5A 5A 1A
4] 2B aM 2B 80 47 10A 5A 2A
4J 2B 4N 2B 8P 47 10B 5A 2C
4K 2A 40 2B 4BD 20
2H 1A 21 1A 4BE 20
2J 1A
2F 2K 1A 2G 4R 2A 6A 124 6A 4A 6B 6G 3A 2F
2L 1A 2N 1A 12B 6A 4B 12C 6A 4C
2M 1A 4S8 2B 6F 3A 2D 12D 6B 4D
4p 2B 4T 2B
40 2B
2H 4U 2B 21 47 2B 6C 12E 6A 4E 6D 12G 6D 4A
4V 2B 4AA 2B 6H 3A 2G 6/ 3B 2D
4w 2A 2P 1A 12F 6B 4G
20 1A 4AB 2B
4X 2B 2Q 1A
4y 2B 4AC 2B
4AD 2B
2J 4AE 2B 3A 3A 1A 6F 12H 6B 4L 6F 12K 6B 4H
4AF 2A 6A 3A 2A 121 6B aM 6L 3A 2H
2R 1A 6B 3A 2B 12J 6B 40 12L 6B 4J
4AG 2B 6C 3A 2C 6J 3A 21 12M 6A 4K
4AH 2B 6K 3A 2]
4A1 2B
3B 3B 1A 4A 8A 4E 6G 12N 6D 4R 6H 6N 3B 2K
6D 3B 2A 8B 4E 6M 3B 2N 60 3B 2L
6F 3B 2C 4AJ 2G 6P 3B 2M
4B 8C 4E 4C 4AL 2E 8A 80 4AL 8B 8S 4A0
8D 4E 4AM 2F 8R 4AM 8T 4AP
4AK 2G 4AN 2F
4D 4A0 2E 4E 4AR 2E 10A 20A 10A 4A 12A 24A 12E 8A
4AP 2F 4AS 2F 10C 5A 2D 120 6H 4AT
4A0 2F 4AT 2F
4AU 2F
12B 24B 12E 8C
12P 6H 4AK

7. The fusion of 2%'(23:5) into 2'S P¢(2)

By making use of the values of ¢;, ¢,, ¢3 and ¢4 on the classes of 2% pe(2), the values of
(P1)26:02550)> (B2)2525:55))> (P3)26:25.55) and (Pa)ps25.5,) On the classes of 2(2°:S), Table 4 and the
permutation character y(2%S ps(2)12°(25:S6)) = la + 27a + 35a of degree 63 of 25§ ps(2) acting on
26'(23:S ), the complete fusion map of 26(23:5) into 2°S pe(2) is computed and is given in Table 7.

AIMS Mathematics

Volume 5, Issue 3, 2113-2125.



2123

Table 7. The fusion of 2(23:5) into 2%'S pe(2).

[8lps.s  Whepssy —  Dhesym [8lps.s  Dhewssy —  Dhogp
1A 1A 1A 2A 4A 4A
2A 2A 4B 4B
2B 2A 2D 2B
2C 2A
2B 2E 2C 2C 4E 4D
2F 2D 4F 4E
4c 4c 2G 2E
4D 4Cc 4G 4F
2D 4H 4D 2E 4L 4A
41 4E am 4B
4J 4E 4N 4B
4K 4F 40 4B
2H 2E 21 2B
2J 2B
2F 2K 2C 2G 4R 4G
2L 2D 2N 2F
2M 2D 48 4H
4P 4c 417 41
40 4C
2H 4U 4G 21 4z 4D
4v 4H 4AA 4E
4w 41 2P 2E
20 2F 4AB 4E
4x 4H 20 2E
4Y 41 4AC 4F
4AD 4F
2J 4AE 4G 3A 3A 3A
4AF 4H 6A 6A
2R 2F 6B 6A
4AG 41 6C 6A
4AH 41
4A1 4H
3B 3B 3C 4A 8A 8A
6D 6B 8B 8B
6F 68 4AJ 4L
4B 8C 8C 4Cc 4AL 4N
8D 8D 4AM 40
4AK 4M 4AN 4P
iD A0 77 IE IAR N
4AP 4K 4AS 40
4AQ 4K 4AT 4P
4AU 4p
4F 8E 8E 4G 8G 8E
4AV 4R 4AX 4R
4AW 40 8H 8F
8F 8F 4AY 40
4H 81 8E 41 8K 8A
8J 8F 8L 8B
4AZ 40 8M 8B
4BA 4R 4BB 4L
4BC 4L
4J 8N 8C SA SA SA
80 8D 10A 10A
8P 8D 10B 10A
4BD 4M
4BE aM
6A 12A 12A 6B 6G 6D
12B 12B 12C 12C
6F 6C 12D 12C
6C 12E 12D 6D 12G 12F
6H 6F 61 6G
12F 12R
6E 12H 124 6F 12K 12D
121 12B 6L 6F
12J 12B 12L 12E
6J 6C 12M 12E
6K 6C
6G 12N 12G 6H 6N 6H
oM 6J 60 6/
6P 61
8A 80 8G 8B 8§ 81
S8R 8H 8T 8J
10A 20A 20A 12A 24A 24A
10C 10B 120 12H
12B 24B 24B
12P 121
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