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1. Introduction

In the papers [2] and [16], the character tables of the non-split extension G3 = 26·S p6(2) and split
extension 26:S p6(2) were successfully computed by the method of Fischer-Clifford matrices [8]. In the
ATLAS [6] we found that NFi22(2

6) � 26:S p6(2) is a maximal subgroup of the smallest Fischer sporadic
simple group Fi22 of index 694980. Here the elementary abelian group 26 is a pure 2B-group, where
2B denotes a class of involutions in Fi22. Dempwolff in [7] proved that a unique non-split extension
(up to isomorphism) of the form Gn = 22n·S p2n(2) does exist for all n ≥ 2, where Gn/22n � S p2n(2) acts
faithfully on 22n. In [2] it was noted that 26:S p6(2) and G3 give rise to the same character table. The
groups 26:S p6(2) and G3 have subgroups of types M1 = 26:(25:S 6) and G = 26·(25:S 6), where M1 and
G are pre-images of a maximal subgroup 25:S 6 of index 63 in S p6(2), under the natural epimorphism
modulo 26.

In this paper, it will be shown that the character tables of M1 and G coincide and how the conjugacy
classes of G can be obtained from the classes of M1 by ”restricting” characters of G3 (see Section 5 of
this paper) to characters of M1. In this regard, the format of the character tables of M1 and G3 (see [2]
and [13]) which were obtained by the method of Fischer-Clifford matrices, plays an important role.
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The power maps of G and the fusion map of G into G3 are also computed. Most of our computations
are done in the computer algebra systems MAGMA [5] and GAP [21]. For concepts and definitions
used in this paper, the readers are referred to the review paper on Fischer-Clifford theory [3] and
[1, 11, 12, 17–19].

2. Theory of Fischer-Clifford matrices

Since the ordinary character tables of the groups 26:S p6(2), G3, M1 and G have been computed
by the technique of Fischer-Clifford matrices, a brief theoretical background of this technique will be
given in this section. In Section 4, it will be shown that only the ordinary irreducible characters of the
inertia factors will be used in the construction of the character table of G. Therefore, only the case
where every irreducible character of N can be extended to its inertia group in the extension group N.G
will be discussed. Here the author will follow closely the work of the authors in [16].

Let G = N.G be an extension of N by G and θ ∈ Irr(N), where Irr(N) denotes the irreducible
characters of N. Define θg by θg(n) = θ(gng−1) for g ∈ G, n ∈ N and θg ∈ Irr(N). Let H ={
x ∈ G|θx = θ

}
= IG(θ) be the inertia group of θ in G. We say that θ is extendible to H if there exists

φ ∈ Irr(H) such that φ ↓N= θ. If θ is extendible to H, then by Gallagher [11], we have{
γ|γ ∈ Irr(H), < γ ↓N , θ >, 0

}
=

{
βφ|β ∈ Irr(H/N)

}
.

Let G have the property that every irreducible character of N can be extended to its inertia group.
Now let θ1 = 1N , θ2, · · · , θt be representatives of the orbits of G on Irr(N), Hi = IG(φi), 1 ≤ i ≤ t,
φi ∈ Irr(Hi) be an extension of θi to Hi and β ∈ Irr(Hi) such that N ⊆ ker(β). Then

Irr(G) =

t⋃
i=1

{(β φi)G | β ∈ Irr(Hi),N ⊆ ker(β)} =

t⋃
i=1

{(β φi)G | β ∈ Irr(Hi/N)}

Hence the irreducible characters of G will be divided into blocks, where each block corresponds to an
inertia group Hi.

Let Hi be the inertia factor group and φi be an extension of θi to Hi. Take θ1 = 1N as the identity
character of N, then H1 = G and H1 � G. Let X(g) = {x1, x2, · · · , xc(g)} be a set of representatives of the
conjugacy classes of G from the coset Ng whose images under the natural homomorphism G −→ G
are in the class [g] of G and we take x1 = ḡ. We define

R(g) = {(i, yk) | 1 ≤ i ≤ t,Hi ∩ [g] , ∅, 1 ≤ k ≤ r},

where yk runs over representatives of the conjugacy classes of elements of Hi which fuse into [g]. Let{
ylk

}
be the representatives of conjugacy classes of Hi which contain liftings of yk under the natural

homomorphism Hi −→ Hi. Then we define the Fischer-Clifford matrix M(g) by M(g) = (a j
(i,yk)), where

a j
(i,yk) =

′∑
l

|CG(x j)|
|CHi

(ylk)|
φi(ylk) ,

with columns indexed by X(g) and rows indexed by R(g) and where
∑′

l is the summation over all l for
which ylk ∼ x j in G. Then the partial character table of G on the classes {x1, x2, · · · , xc(g)} is given by
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C1(g) M1(g)
C2(g) M2(g)

...

Ct(g) Mt(g)

 where the Fischer-Clifford matrix M(g) =


M1(g)
M2(g)
...

Mt(g)

 is divided into blocks Mi(g) with

each block corresponding to an inertia group Hi and Ci(g) is the partial character table of Hi consisting
of the columns corresponding to the classes that fuse into [g]. Hence the full character table of G will be

∆1

∆2
...

∆t

, where ∆i = [Ci(1)Mi(1)|Ci(g2)Mi(g2)|...|Ci(gk)Mi(gk)] with {1, g1, g2, ..., gk} the representatives

of conjugacy classes of G. We can also observe that |Irr(G)| = |Irr(H1)| + |Irr(H2)| +...+ |Irr(Ht)|.

3. The action of G on N and Irr(N)

The group G3 = 26·S p6(2) was constructed in [2] as a permutation group on 128 points and it was
shown that G3 has an inertia group G = 26·(25:S 6) which belongs to a non-split extension of a reducible
module of dimension 6 over GF(2) for the maximal subgroup 25:S 6 of S p6(2). Using the generators
of G3 given in [2], the group G is constructed as the centralizer CG3

(2A) of the class of involutions 2A
within G3.

Let G = 26·(25:S 6) be the non-split extension of N = 26 by G = 25:S 6. The group 25:S 6 is the
stabilizer of a vector in the action of S p6(2) on its natural 6-dimensional module 26. This action is the
same in both the split and non-split extensions 26:S p6(2) and G3. This immediately defines the action
of 25:S 6 on the module 26. Note that the action of the split extension M1 = 26:(25:S 6) on 26 is the same
as the action of 25:S 6 on 26. The group G can be constructed as a matrix group of dimension 6 over
the finite field GF(2) within S p6(2). Now with the action of G on N = 26, where we view N as the
vector space of dimension six over GF(2), we will obtain four orbits of lengths 1, 1, 30 and 32 with
corresponding point stabilizers G, G, 24:S 5 and S 6, respectively. By Brauer’s Theorem [10] the action
of G on Irr(N) will also produce 4 orbits and since the action is self-dual, the orbit lengths will be
1, 1, 30 and 32 with corresponding inertia factor groups H1 = H2 = G, H3 = 24:S 5 and H4 = S 6.

4. The ordinary character table of G = 26·(25:S 6)

Having obtained the inertia factors H1 = H2 = G, H3 = 24:S 5 and H4 = S 6 for the action of G on
Irr(N), we can formed the Fischer-Clifford matrix M(1A) corresponding to the identity coset N1G = N
as follows:

M(1A) =


1474560 1474560 49152 46080

23040 1 1 1 1
23040 1 1 1 −1
768 30 30 −2 0
720 32 −32 0 0


1 1 30 32

The column weights above the matrix M(1A) are the centralizer orders |CG(g)| of the classes
1A, 2A, 2B and 2C of G (see Table 5) coming from the identity coset N(1A) = N by means of the
technique of coset-analysis (see [14], [15] and [16]). Whereas, the row weights to the left of the
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matrix M(1A) represent the centralizer orders |CHi(1A)| of the inertia factors Hi on the identity
element 1A.

Table 1. The partial character table of G for coset N.

[g]G 1A 2A 2B 2C

χ1 1 1 1 1
χ38 a a a -a
χ38+t2 30b 30b -2b 0
χ38+t2+t3 32c -32c 0 0

Table 1 is the partial ordinary character table of G on the classes 1A, 2A, 2B and 2C of G, where each
of the 4 lines of Table 1 corresponds to the first row of entries of the sub-matrices Ci(1A)Mi(1A), i =

1, 2, 3, 4. Mi(1A) and Ci(1A) correspond to the rows of the Fischer-Clifford matrix M(1A) and columns
of the projective character tables of the inertia factors Hi, respectively, which are associated with the
classes [1A]Hi of the inertia factors Hi which fuse into the class [1A]G of G. Also, note that the character
values in the 1st column of Table 1 are the degrees of the ordinary irreducible characters χ1, χ38, χ38+t2

and χ38+t2+t3 of G. The characters χ1, χ38, χ38+t2 and χ38+t2+t3 occupy the first position for each block
of characters coming from an inertia subgroup Hi of G, where 37, t2 and t3 represent the number
|IrrPro j(Hi, αi)| of irreducible projective characters with associated factor set αi for the inertia factors
H1,H2 and H3, respectively. Now deg(η1) = 1, deg(φ1) = a, deg(ψ1) = b and deg(γ1) = c are the
degrees of the irreducible projective characters 1G, φ1, ψ1 and γ1 which occupy the first position in
each set IrrPro j(Hi, αi), i = 1, 2, ..., 4, respectively.

We copy a small part of the ordinary character table of 26·S p6(2) (see Table 11.12 in [4]), containing
the values of the character 63a on the classes 1A, 2A:

[g]G3
1A 2A

63a 63 -1

Now the classes 1A, 2A, 2B and 2C of G consist of the elements of N (see Table 5). If we decompose
(63a)N into the the set Irr(N) and also notice that < (63a)N , 1N > = 0 , then (63a)N = a(χ38)N +

b(χ38+t2)N + c(χ38+t2+t3)N , where a, b and c are defined as above. If we take into account the fusion
of the classes 1A, 2A, 2B and 2C of G into the classes of 1A and 2A of G3, and the decomposition of
(63a)N into the set Irr(N), then the following set of equations (by restricting the character values of
63a to Table 1) is obtained:

1. (63a)N(1A) = a + 30b + 32c = 63
2. (63a)N(2A) = a + 30b − 32c = −1
3. (63a)N(2B) = a − 2b = −1
4. (63a)N(2C) = −a = −1

Solving the above equations simultaneously, we obtain that a = b = 1 = c = 1 and hence deg(φ1) =

deg(ψ1) = deg(γ1) = 1. We can conclude that only the ordinary irreducible characters tables of the
inertia factors Hi will be involved in the construction of the ordinary character table of 26·(25:S 6). This
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means that the ordinary irreducible characters of the split extension M1 = 26:(25:S 6) (Table 9.7 in [13])
are the same as the ones for the non-split extension G, but the class orders of the two groups will differ
as it will be shown in Section 5.

5. The conjugacy classes of G

In this section, we will compute the order of an element g in a conjugacy class [g]G of G from
the conjugacy classes and ordinary irreducible characters of both M1 and G3. For both G and M1, the
centralizer orders for each class of elements coming from a corresponding coset Ng, g ∈ 25:S 6, will be
the same, but their class orders may be different. The method of coset-analysis was used to compute
the conjugacy classes of elements of 26:(25:S 6) (see Table 5) and G3 (Table 1 in [2]). Let G = N.G be
an extension of N by G, where N is abelian. Then for g ∈ G, we write g for a lifting of g in G under
the natural homomorphism G −→ G. We consider a coset Ng for each class representative g of G,
writing k for number of orbits of N acting by conjugation on the coset Ng, and f j for the numbers of
these fused by the action of

{
h : h ∈ CG(g)

}
. Note if G is a split extension then g becomes g. The order

of the centralizer CG(x) for each element x ∈ G in a conjugacy class [x]G is given by |CG(x)| = k|CG(g)|
f j

.

For example, let consider the classes of M1 = 26:(25:S 6) obtained from the cosets N(2A) and
N(2E) (see Table 3), where 2A and 2E are classes of involutions in 25:S 6. In addition, we consider
also the partial character table of M1 corresponding to the cosets N(2A) and N(2E) (see [13]), which
was computed by the technique of Fischer-Clifford matrices. We obtained also from [13] that
(φ1 = 63a)26:(25:S 6) = χ38 + χ75 + χ127, (φ2 = 63b)26:(25:S 6) = χ39 + χ76 + χ128, (φ3 = 315a)26:(25:S 6) =

χ43 + χ86 + χ94 + χ132 and (φ4 = 315b)26:(25:S 6) = χ40 + χ75 + χ80 + χ94 + χ130, where φ1, φ2, φ3 and φ4

are ordinary irreducible characters of 26:S p6(2) of degrees 63 and 315 which are restricted to
irreducible characters of M1 by the technique of set intersection (see [9, 14, 16]).

From Table 4 we notice that classes 2A and 2E of 25:S 6 are fusing into the class 2A of S p6(2).
Hence the classes of G, which will be obtained from the cosets N(2A) and N(2E) using coset analysis,
will fuse into the classes of G3 lying above the class 2A of S p6(2). Since the character tables of G and
M1 coincide, the corresponding cosets N(2A) and N(2E) for both of the groups will produce the same
number of classes and share the same class centralizer orders and partial character tables. Also G3 and
26:S p6(2) share the same character table and therefore we can expect that the irreducible character χ32

of degree 63 of G3 (see Table 2) will restrict to the same irreducible characters as above-mentioned
character φ2 = 63b.

Suppose that Table 3 is the partial character table of G corresponding to the cosets N, N(2A) and
N(2E) and irreducible characters of degrees 1, 30 and 32. Now the ordinary character χ32 of G3 in Table
2 will restrict to the sum of the irreducible characters χ39, χ76 and χ128 of G in Table 3. If the character
values of χ32 on the classes 4A, 4B and 2B coming from the coset N(2A) in Table 2 and the character
values of the restricted character (χ32)G = χ39 +χ76 +χ128 on the classes 2D, 2E, 4A, 2L, 2M, 2N, 2O, 4I
and 4J coming from the cosets N(2A) and N(2E) in Table 3 are taking into consideration, then the
class orders of 2D, 2E, 2L, 2M, 2N and 2O are forced to change from order 2 to order 4 whereas the
class orders of 4A, 4I and 4J are forced to change from order 4 to order 2. Hence we obtained the
classes of G, with their respective class orders and centralizer orders (see Table 5), associated with the
cosets N(2A) and N(2E). In a similar fashion, we obtained all the classes of G, with their class and
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centralizer orders, using the above restricted characters φ1, φ2, φ3 and φ4 together with the ordinary
character tables of G3 and M1. See Table 5 where all the information concerning the conjugacy classes
of M1 and G are listed. For the explanation of the parameters used in Table 5 the readers are referred
to [16] and [20].

Table 2. The partial character table of G3 = 26·S p6(2).

[g]S p6(2) 1A 2A

[g]26 ·S p6(2) 1A 2A 4A 4B 2B

χ32 63 -1 -29 3 -1

Table 3. The partial character table of M1 = 26:(25:S 6).

[g]25:S 6 1A 2A 2E

[g]26:(25:S 6) 1A 2A 2B 2C 2D 2E 4A 2L 2M 2N 2O 4I 4J

χ39 1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1
χ76 30 30 -2 0 -30 2 0 -12 -12 4 2 -2 0
χ128 32 -32 0 0 0 0 0 -16 16 0 0 0 0

χ39 + χ76 + χ128 63 -1 -1 -1 -29 3 -1 -29 3 3 3 -1 -1

Table 4. The fusion of 25:S 6 into S p(6, 2).

[h]25:S 6 −→ [g]S p(6,2) [h]25:S 6 −→ [g]S p(6,2) [h]25:S 6 −→ [g]S p(6,2) [h]25:S 6 −→ [g]S p(6,2)

1A 1A 2J 2D 4G 4E 6E 6B

2A 2A 3A 3A 4H 4E 6F 6D

2B 2B 3B 3C 4I 4B 6G 6G

2C 2C 4A 4B 4J 4C 6H 6F

2D 2C 4B 4C 5A 5A 8A 8A

2E 2A 4C 4D 6A 6B 8B 8B

2F 2B 4D 4A 6B 6A 10A 10A

2G 2D 4E 4D 6C 6D 12A 12A

2H 2D 4F 4E 6D 6E 12B 12B

2I 2C
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Table 5. The conjugacy classes of elements of the groups M1 and G.

[g]25:S 6
k f j d j w [g]M1 [g]G |CM1 (g)| and |CG(g)|

1A 64 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 1A 1A 1474560
f2 = 1 (1, 0, 1, 0, 0, 1) (1, 0, 1, 0, 0, 1) 2A 2A 1474560

f3 = 30 (0, 1, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0) 2B 2B 49152
f4 = 32 (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) 2C 2C 46080

2A 32 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2D 4A 737280
f2 = 15 (0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2E 4B 49152
f3 = 16 (1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 0) 4A 2D 46080

2B 16 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2F 2E 24576
f2 = 3 (1, 1, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0) 2G 2F 8192
f3 = 4 (0, 0, 0, 1, 1, 1) (1, 0, 1, 0, 0, 1) 4B 4C 6144
f4 = 8 (1, 0, 0, 0, 0, 0) (0, 1, 0, 0, 1, 0) 4C 4D 3072

2C 16 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2H 4E 24576
f2 = 3 (0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2I 4F 8192
f3 = 4 (1, 1, 0, 0, 1, 1) (1, 0, 1, 0, 0, 1) 4D 2G 6144
f4 = 8 (1, 0, 0, 0, 0, 0) (0, 1, 1, 0, 0, 0) 4E 4G 3072

2D 16 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2J 4H 12288
f2 = 3 (1, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 2K 4I 4096
f3 = 4 (1, 0, 0, 0, 0, 0) (0, 1, 1, 0, 0, 0) 4F 4J 3072
f4 = 4 (1, 1, 1, 1, 0, 0) (1, 1, 0, 0, 0, 1) 4G 4K 3072
f5 = 4 (1, 0, 1, 0, 1, 0) (1, 0, 1, 0, 0, 1) 4H 2H 3072

2E 32 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2L 4L 24576
f2 = 1 (1, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 2M 4M 24576
f3 = 6 (1, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 2N 4N 4096
f4 = 8 (1, 1, 0, 0, 1, 1) (0, 1, 1, 0, 0, 0) 2O 4O 3072
f5 = 8 (0, 1, 0, 0, 1, 1) (0, 1, 1, 0, 0, 0) 4I 2I 3072
f6 = 8 (0, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 4J 2J 3072

2F 16 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2P 2K 6144
f2 = 1 (1, 1, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0) 2Q 2L 6144
f3 = 2 (1, 1, 1, 1, 0, 1) (0, 0, 0, 0, 0, 0) 2R 2M 3072
f4 = 6 (1, 1, 1, 1, 1, 1) (0, 0, 0, 1, 0, 1) 4K 4P 1024
f5 = 6 (0, 1, 1, 1, 1, 1) (1, 1, 1, 0, 1, 1) 4L 4Q 1024

2G 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2S 4R 3072
f2 = 1 (1, 0, 0, 1, 1, 1) (1, 0, 1, 0, 0, 1) 4M 2N 3072
f3 = 3 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 0) 4N 4S 1024
f4 = 3 (1, 1, 1, 1, 0, 0) (1, 0, 1, 1, 0, 0) 4O 4T 1024

2H 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2T 4U 1024
f2 = 1 (1, 1, 1, 0, 1, 1) (1, 0, 0, 0, 0, 1) 4P 4V 1024
f3 = 1 (1, 1, 1, 1, 0, 0) (1, 1, 0, 0, 0, 1) 4Q 4W 1024
f4 = 1 (1, 1, 1, 1, 1, 0) (1, 0, 1, 0, 0, 1) 4R 2O 1024
f5 = 2 (1, 1, 1, 1, 1, 1) (1, 0, 0, 0, 0, 1) 4S 4X 512
f6 = 2 (1, 1, 1, 1, 0, 1) (1, 1, 1, 0, 0, 1) 4T 4Y 512

2I 16 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2U 4Z 2048
f2 = 1 (0, 1, 1, 1, 0, 1) (0, 0, 0, 0, 0, 0) 2V 4AA 2048
f3 = 2 (0, 1, 1, 1, 1, 1) (1, 0, 1, 1, 1, 0) 4U 2P 1024
f4 = 2 (1, 1, 1, 1, 1, 1) (1, 0, 1, 1, 1, 0) 2W 4AB 1024
f5 = 2 (1, 1, 1, 1, 0, 1) (0, 0, 0, 0, 0, 0) 4V 2Q 1024
f6 = 4 (1, 1, 1, 1, 0, 0) (1, 1, 0, 1, 0, 0) 4W 4AC 512
f7 = 4 (1, 0, 1, 1, 1, 1) (1, 1, 0, 1, 0, 0) 4X 4AD 512

2J 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2X 4AE 1024
f2 = 1 (1, 1, 1, 1, 0, 1) (1, 0, 1, 0, 0, 1) 4Y 4AF 1024
f3 = 1 (1, 1, 1, 0, 0, 1) (1, 0, 1, 1, 1, 0) 4Z 2R 1024
f4 = 1 (1, 1, 1, 1, 1, 1) (0, 0, 0, 1, 1, 1) 4AA 4AG 1024
f5 = 2 (1, 1, 1, 1, 1, 0) (0, 1, 1, 0, 1, 0) 4AB 4AH 512
f6 = 2 (1, 1, 0, 1, 1, 1) (1, 1, 0, 0, 1, 1) 4AC 4AI 512
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Table 5 (continued)
[g]25:S 6

k f j d j w [g]M1 [g]G |CM1 (g)| and |CG(g)|

3A 16 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 3A 3A 2304
f2 = 1 (1, 0, 1, 0, 0, 1) (1, 0, 1, 0, 0, 1) 6A 6A 2304
f3 = 6 (0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 1, 1) 6B 6B 384
f4 = 8 (0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 1) 6C 6C 288

3B 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 3B 3B 144
f2 = 1 (1, 0, 1, 0, 0, 1) (1, 0, 1, 0, 0, 1) 6D 6D 144
f3 = 2 (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) 6E 6E 72

4A 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AD 8A 1536
f2 = 3 (1, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 4AE 8B 512
f3 = 4 (1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 8A 4AJ 384

4B 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AF 8C 1536
f2 = 3 (0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AG 8D 512
f3 = 4 (1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 1) 8B 4AK 384

4C 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AH 4AL 512
f2 = 1 (1, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0) 4AI 4AM 512
f3 = 2 (1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AJ 4AN 256

4D 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AK 4AO 512
f2 = 1 (1, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0) 4AL 4AP 512
f3 = 2 (0, 0, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0) 4AM 4AQ 256

4E 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4A 4AR 256
f2 = 1 (1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AO 4AS 256
f3 = 1 (1, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 4AP 4AT 256
f4 = 1 (1, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0) 4AQ 4AU 256

4F 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AR 8E 128
f2 = 1 (1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 8C 4AV 128
f3 = 1 (0, 1, 0, 0, 0, 0) (1, 0, 1, 1, 1, 0) 8D 4AW 128
f4 = 1 (1, 1, 0, 0, 0, 0) (1, 0, 1, 1, 1, 0) 4AS 8F 128

4G 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AT 8G 128
f2 = 1 (0, 0, 0, 1, 1, 0) (1, 0, 1, 0, 0, 1) 8E 4AX 128
f3 = 1 (1, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 4AU 8H 128
f4 = 1 (1, 1, 0, 1, 1, 1) (1, 0, 1, 0, 0, 1) 8F 4AY 128

4H 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AV 8I 128
f2 = 1 (1, 0, 0, 0, 1, 0) (1, 0, 1, 0, 1, 1) 4AW 8J 128
f3 = 1 (0, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 8G 4AZ 128
f4 = 1 (1, 1, 0, 0, 1, 1) (1, 0, 1, 0, 1, 1) 8H 4BA 128

4I 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4AX 8K 256
f2 = 1 (1, 0, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0) 4AY 8L 256
f3 = 2 (1, 0, 0, 0, 1, 0) (1, 0, 1, 0, 1, 1) 4AZ 8M 128
f4 = 2 (1, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 8I 4BB 128
f5 = 2 (1, 1, 0, 0, 1, 1) (0, 0, 1, 0, 0, 0) 8J 4BC 128

4J 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4BA 8N 256
f2 = 1 (1, 0, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0) 4BB 8O 256
f3 = 2 (1, 0, 0, 0, 0, 0) (0, 0, 0, 1, 1, 1) 4BC 8P 128
f4 = 2 (1, 1, 1, 1, 0, 0, 1) (0, 0, 0, 1, 1, 1) 8K 4BD 128
f5 = 2 (1, 1, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0) 8L 4BE 128

5A 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 5A 5A 40
f2 = 1 (1, 0, 1, 0, 0, 1) (1, 0, 1, 0, 0, 1) 10A 10A 40
f3 = 2 (1, 0, 0, 0, 0, 0) (1, 1, 0, 0, 0, 0) 10B 10B 20
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Table 5 (continued)
[g]25:S 6

k f j d j w [g]M1 [g]G |CM1 (g)| and |CG(g)|

6A 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6F 12A 1152
f2 = 3 (1, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0) 6G 12B 384
f3 = 4 (1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 1) 12A 6F 288

6B 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6H 6G 192
f2 = 1 (1, 0, 1, 0, 1, 1) (1, 0, 1, 0, 0, 1) 12B 12C 192
f3 = 2 (1, 0, 1, 1, 0, 1) (0, 1, 1, 0, 0, 0) 12C 12D 96

6C 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6I 12E 192
f2 = 1 (1, 0, 1, 0, 1, 1) (1, 0, 1, 0, 0, 1) 12D 6H 192
f3 = 2 (1, 0, 1, 1, 1, 1) (0, 1, 1, 0, 1, 0) 12E 12F 96

6D 2 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6J 12G 72
f2 = 1 (0, 0, 1, 0, 0, 1) (0, 0, 1, 0, 0, 1) 12F 6I 72

6E 8 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6K 12H 192
f2 = 1 (1, 0, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0) 6L 12I 192
f3 = 2 (1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6M 12J 96
f4 = 2 (1, 0, 1, 0, 1, 1) (0, 1, 1, 0, 0, 0) 12G 6J 96
f5 = 2 (1, 0, 0, 0, 1, 0) (0, 1, 1, 0, 0, 0) 12H 6K 96

6F 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6N 12K 96
f2 = 1 (1, 0, 0, 0, 0, 0) (0, 1, 1, 0, 0, 0) 12I 6L 96
f3 = 1 (1, 0, 1, 0, 1, 1) (1, 1, 0, 0, 0, 1) 12J 12L 96
f4 = 1 (1, 0, 0, 0, 1, 0) (1, 0, 1, 0, 0, 1) 12K 12M 96

6G 2 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6O 12N 24
f2 = 1 (1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 1) 12L 6M 24

6H 4 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6P 6N 48
f2 = 1 (1, 1, 1, 0, 1, 1) (0, 0, 0, 0, 0, 0) 6Q 6O 48
f3 = 2 (1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6R 6P 24

8A 2 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 8M 8Q 32
f2 = 1 (1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 8N 8R 32

8B 2 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 8O 8S 32
f2 = 1 (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) 8P 8T 32

10A 2 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 10C 20A 20
f2 = 1 (1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 1) 20A 10C 20

12A 2 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 12M 24A 48
f2 = 1 (1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 1) 24A 12O 48

12B 2 f1 = 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 12N 24B 48
f2 = 1 (1, 0, 0, 0, 0, 0) (1, 0, 1, 0, 0, 1) 24B 12P 48

6. The power maps of the elements of 26:(25:S 6)

By restricting some ordinary characters of G3 to G and also computing the structure constants (using
GAP) for the set Irr(G), we ensure that the consistency checks of Programme E [22] for the set Irr(G)
are satisfied. The information about the conjugacy classes found in Table 5 can be used to compute the
power maps for the elements of G and Programme E is used to confirm that the character table of G
produces the unique p-powers listed in Table 6.
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Table 6. The power maps of the elements of 26·(25:S 6).

[g]G [x]G 2 3 5 [g]G [x]G 2 3 5 [g]G [x]G 2 3 5 [g]G [x]G 2 3 5
1A 1A 2A 4A 2A 4F 8E 4F 4G 8G 4AA

2A 1A 4B 2A 4AV 2G 4AX 2Q
2B 1A 2D 1A 4AW 2G 8H 4Z
2C 1A 8F 4E 4AY 2Q

2B 2E 1A 2C 4E 2A 4H 8I 4AA 4I 8K 4Z
2F 1A 4F 2A 8J 4Z 8L 4Z
4C 2A 2G 1A 4AZ 2Q 8M 4Z
4D 2B 4G 2B 4BA 2Q 4BB 2Q

4BC 2Q
2D 4H 2B 2E 4L 2B 4J 8N 4Z 5A 5A 1A

4I 2B 4M 2B 8O 4Z 10A 5A 2A
4J 2B 4N 2B 8P 4Z 10B 5A 2C
4K 2A 4O 2B 4BD 2Q
2H 1A 2I 1A 4BE 2Q

2J 1A
2F 2K 1A 2G 4R 2A 6A 12A 6A 4A 6B 6G 3A 2E

2L 1A 2N 1A 12B 6A 4B 12C 6A 4C
2M 1A 4S 2B 6F 3A 2D 12D 6B 4D
4P 2B 4T 2B
4Q 2B

2H 4U 2B 2I 4Z 2B 6C 12E 6A 4E 6D 12G 6D 4A
4V 2B 4AA 2B 6H 3A 2G 6I 3B 2D
4W 2A 2P 1A 12F 6B 4G
2O 1A 4AB 2B
4X 2B 2Q 1A
4Y 2B 4AC 2B

4AD 2B
2J 4AE 2B 3A 3A 1A 6E 12H 6B 4L 6F 12K 6B 4H

4AF 2A 6A 3A 2A 12I 6B 4M 6L 3A 2H
2R 1A 6B 3A 2B 12J 6B 4O 12L 6B 4J

4AG 2B 6C 3A 2C 6J 3A 2I 12M 6A 4K
4AH 2B 6K 3A 2J
4AI 2B

3B 3B 1A 4A 8A 4E 6G 12N 6D 4R 6H 6N 3B 2K
6D 3B 2A 8B 4E 6M 3B 2N 6O 3B 2L
6E 3B 2C 4AJ 2G 6P 3B 2M

4B 8C 4E 4C 4AL 2E 8A 8Q 4AL 8B 8S 4AO
8D 4E 4AM 2F 8R 4AM 8T 4AP

4AK 2G 4AN 2F

4D 4AO 2E 4E 4AR 2E 10A 20A 10A 4A 12A 24A 12E 8A
4AP 2F 4AS 2F 10C 5A 2D 12O 6H 4AJ
4AQ 2F 4AT 2F

4AU 2F
12B 24B 12E 8C

12P 6H 4AK

7. The fusion of 26·(25:S 6) into 26·S P6(2)

By making use of the values of φ1, φ2, φ3 and φ4 on the classes of 26·S p6(2), the values of
(φ1)26 ·(25 ·S 6), (φ2)26 ·(25:S 6)), (φ3)26 ·(25:S 6) and (φ4)26 ·(25:S 6) on the classes of 26·(25:S 6), Table 4 and the
permutation character χ(26·S p6(2)|26·(25:S 6)) = 1a + 27a + 35a of degree 63 of 26·S p6(2) acting on
26·(25:S 6), the complete fusion map of 26·(25:S 6) into 26·S p6(2) is computed and is given in Table 7.
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Table 7. The fusion of 26·(25:S 6) into 26·S p6(2).

[g](25:S 6) [x]26 · (25:S 6) −→ [y]26 ·S p6(2) [g](25:S 6) [x]26 · (25:S 6) −→ [y]26 ·S p6(2)

1A 1A 1A 2A 4A 4A
2A 2A 4B 4B
2B 2A 2D 2B
2C 2A

2B 2E 2C 2C 4E 4D
2F 2D 4F 4E
4C 4C 2G 2E
4D 4C 4G 4F

2D 4H 4D 2E 4L 4A
4I 4E 4M 4B
4J 4E 4N 4B
4K 4F 4O 4B
2H 2E 2I 2B

2J 2B
2F 2K 2C 2G 4R 4G

2L 2D 2N 2F
2M 2D 4S 4H
4P 4C 4T 4I
4Q 4C

2H 4U 4G 2I 4Z 4D
4V 4H 4AA 4E
4W 4I 2P 2E
2O 2F 4AB 4E
4X 4H 2Q 2E
4Y 4I 4AC 4F

4AD 4F
2J 4AE 4G 3A 3A 3A

4AF 4H 6A 6A
2R 2F 6B 6A

4AG 4I 6C 6A
4AH 4I
4AI 4H

3B 3B 3C 4A 8A 8A
6D 6B 8B 8B
6E 6B 4AJ 4L

4B 8C 8C 4C 4AL 4N
8D 8D 4AM 4O

4AK 4M 4AN 4P
4D 4AO 4J 4E 4AR 4N

4AP 4K 4AS 4O
4AQ 4K 4AT 4P

4AU 4P
4F 8E 8E 4G 8G 8E

4AV 4R 4AX 4R
4AW 4Q 8H 8F
8F 8F 4AY 4Q

4H 8I 8E 4I 8K 8A
8J 8F 8L 8B

4AZ 4Q 8M 8B
4BA 4R 4BB 4L

4BC 4L
4J 8N 8C 5A 5A 5A

8O 8D 10A 10A
8P 8D 10B 10A

4BD 4M
4BE 4M

6A 12A 12A 6B 6G 6D
12B 12B 12C 12C
6F 6C 12D 12C

6C 12E 12D 6D 12G 12F
6H 6F 6I 6G
12F 12R

6E 12H 12A 6F 12K 12D
12I 12B 6L 6F
12J 12B 12L 12E
6J 6C 12M 12E
6K 6C

6G 12N 12G 6H 6N 6H
6M 6J 6O 6I

6P 6I
8A 8Q 8G 8B 8S 8I

8R 8H 8T 8J
10A 20A 20A 12A 24A 24A

10C 10B 12O 12H
12B 24B 24B

12P 12I
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