Citation: Ya-Lei Li, Da-Bin Wang, Jin-Long Zhang. Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity[J]. AIMS Mathematics, 2020, 5(3): 2100-2112. doi: 10.3934/math.2020139
[1] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[2] | J. L. Lions, On some questions in boundary value problems of mathematical physics, In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, NorthHolland Math. Stud., North-Holland, Amsterdam, New York, (1978), 284-346. |
[3] | D. Cassani, Z. Liu, C. Tarsi, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145-161. doi: 10.1016/j.na.2019.01.025 |
[4] | B. T. Cheng, X. H. Tang, Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems, Complex Var. Elliptic, 62 (2017), 1093-1116. doi: 10.1080/17476933.2016.1270272 |
[5] | Y. B. Deng, S. J. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527. |
[6] | Y. B. Deng, W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), 3139-3168. |
[7] | G. M. Figueiredo, R. G. Nascimento, Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr., 288 (2015), 48-60. doi: 10.1002/mana.201300195 |
[8] | G. M. Figueiredo, J. R. Santos Júnior, Existence of a least energy nodal solution for a Schrödinger-Kirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506. |
[9] | X. Han, X. Ma, X. M. He, Existence of sign-changing solutions for a class of p-Laplacian Kirchhoff-type equations, Complex Var. Elliptic, 64 (2019), 181-203. doi: 10.1080/17476933.2018.1427078 |
[10] | W. Han, J. Yao, The sign-changing solutions for a class of p-Laplacian Kirchhoff type problem in bounded domains, Comput. Math. Appl., 76 (2018), 1779-1790. doi: 10.1016/j.camwa.2018.07.029 |
[11] | F. Y. Li, C. Gao, X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 448 (2017), 60-80. doi: 10.1016/j.jmaa.2016.10.069 |
[12] | Q. Li, X. Du, Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödingertype equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 477 (2019), 174-186. |
[13] | S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432 (2015), 965-982. doi: 10.1016/j.jmaa.2015.07.033 |
[14] | A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287. doi: 10.1016/j.na.2008.02.011 |
[15] | A. Mao, S. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243. doi: 10.1016/j.jmaa.2011.05.021 |
[16] | M. Shao, A. Mao, M. Shao, Signed and sign-changing solutions of Kirchhoff type problems, J. Fixed Point Theory Appl., 20 (2018), 2. |
[17] | W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differential Equations, 259 (2015), 1256-1274. doi: 10.1016/j.jde.2015.02.040 |
[18] | J. Sun, L. Li, M. Cencelj, Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^3$, Nonlinear Anal., 186 (2019), 33-54. |
[19] | X. H. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016), 2384-2402. doi: 10.1016/j.jde.2016.04.032 |
[20] | D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501. Available from: https://doi.org/10.1063/1.5074163. |
[21] | D. B. Wang, T. Li, X. Hao, Least-energy sign-changing solutions for KirchhoffSchrödinger-Poisson systems in $\mathbb{R}^3$, Bound. Value Probl., 75 (2019). Available from: https://doi.org/10.1186/s13661-019-1183-3. |
[22] | D. B. Wang, Y. Ma, W. Guan, Least energy sign-changing solutions for the fractional Schrödinger-Poisson systems in $\mathbb{R}^3$, Bound. Value Probl., 25 (2019). Available from: https://doi.org/10.1186/s13661-019-1128-x. |
[23] | D. B. Wang, H. Zhang, W. Guan, Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284-2301. doi: 10.1016/j.jmaa.2019.07.052 |
[24] | D. B. Wang, H. Zhang, Y. Ma, et al, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system with potential vanishing at infinity, J. Appl. Math. Comput., 61 (2019), 611-634. doi: 10.1007/s12190-019-01265-y |
[25] | L. Wang, B. L. Zhang, K. Cheng, Ground state sign-changing solutions for the SchrödingerKirchhoff equation in $\mathbb{R}^3$, J. Math. Anal. Appl., 466 (2018), 1545-1569. |
[26] | L. Wen, X. H. Tang, S. Chen, Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity, Electron. J. Qual. Theo., 47 (2019), 1-13. |
[27] | H. Ye, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $\mathbb{R}^N$, J. Math. Anal. Appl., 431 (2015), 935-954. |
[28] | Z. T. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descentow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102 |
[29] | C. O. Alves, D. C. de Morais Filho, Existence and concentration of positive solutions for a Schrödinger logarithmic equation, Z. Angew. Math. Phys., 69 (2018), 144. |
[30] | P. d'Avenia, E. Montefusco, M. Squassina, On the logarithmic Schrödinger equation, Commun. Contemp. Math., 16 (2014), 313-402. |
[31] | P. d'Avenia, M. Squassina, M. Zenari, Fractional logarithmic Schrödinger equations, Math. Methods Appl. Sci., 38 (2015), 5207-5216. doi: 10.1002/mma.3449 |
[32] | C. Ji, A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., 437 (2016), 241-254. doi: 10.1016/j.jmaa.2015.11.071 |
[33] | W. Shuai, Multiple solutions for logarithmic Schrödinger equations, Nonlinearity, 32 (2019), 2201-2225. doi: 10.1088/1361-6544/ab08f4 |
[34] | M. Squassina, A. Szulkin, Multiple solutions to logarithmic Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 54 (2015), 585-597. doi: 10.1007/s00526-014-0796-8 |
[35] | K. Tanaka, C. Zhang, Multi-bump solutions for logarithmic Schrödinger equations, Calc. Var. Partial Differential Equations, 56 (2017), 33. |
[36] | S. Tian, Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity, J. Math. Anal. Appl., 454 (2017), 816-228. doi: 10.1016/j.jmaa.2017.05.015 |
[37] | W. C. Troy, Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation, Arch. Ration. Mech. Anal., 222 (2016), 1581-1600. doi: 10.1007/s00205-016-1028-5 |
[38] | C. Miranda, Un'osservazione su un teorema di Brouwer, Bol. Un. Mat. Ital., 3 (1940), 5-7. |
[39] | M. Willem, Minimax Theorems, Birkhäuser, Bosten, 1996. |
[40] | Klaus Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. |
[41] | D. J. Guo, Nonlinear Functional Analysis, Higher Education Press, Beijing, 2015. |
[42] | E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed point theorems, SpringerVerlag, New York, 1986. |