
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(3): 2100–2112.
DOI:10.3934/math.2020139
Received: 19 December 2019
Accepted: 12 February 2020
Published: 26 February 2020

Research article

Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem
with logarithmic nonlinearity

Ya-Lei Li, Da-Bin Wang∗ and Jin-Long Zhang

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P.
R. China

* Correspondence: Email: wangdb96@163.com; Tel: +8613919957403.

Abstract: In this paper, we study the existence of ground state sign-changing solutions for following
p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity −(a + b

∫
Ω
|∇u|pdx)∆pu = |u|q−2u ln u2, x ∈ Ω

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, a, b > 0 are constant, 4 ≤ 2p < q < p∗ and N > p. By
using constraint variational method, topological degree theory and the quantitative deformation lemma,
we prove the existence of ground state sign-changing solutions with precisely two nodal domains.

Keywords: p-Laplacian Kirchhoff-type equation; nonlocal term; variation methods; sign-changing
solutions
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1. Introduction

In this article, we are consider the existence of the ground state sign-changing solution for the
following p-Laplacian Kirchhoff-type equation −(a + b

∫
Ω
|∇u|pdx)∆pu = |u|q−2u ln u2, x ∈ Ω

u = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN is a smooth bounded domain, a, b > 0, 4 ≤ 2p < q < p∗ and N > p, ∆p denote the
p-Laplacian operator defined by ∆pu = div(|∇u|p−2 · ∇u).
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Problem (1.1) stem from following Kirchhoff equations

− (a + b
∫

Ω

|∇u|2dx)∆u = f (x, u), (1.2)

where Ω ⊂ RN is a bounded domain or Ω = RN , a > 0, b > 0 and u satisfies some boundary conditions.
Problem (1.2) is related to the following stationary analogue of the equation of Kirchhoff type

utt − (a + b
∫

Ω

|∇u|2dx)∆u = f (x, u), (1.3)

which was introduced by Kirchhoff [1] as a generalization of the well-known D’Alembert wave
equation

ρ
∂2u
∂t2 − (

p0

h
+

E
2L

∫ L

0
|
∂u
∂x
|2dx)

∂2u
∂x2 = f (x, u), (1.4)

for free vibration of elastic strings.
After the pioneer work of Lions [2], where a functional analysis approach was proposed to (1.3)

with Dirichlet boundary condition, a lot of interesting results for (1.2) or similar problems are obtained
in last decades.

Recently, many authors pay their attentions to find sign-changing solutions to problem (1.2) or
similar equations, and indeed some interesting results were obtained, see for examples, [3–28] and the
references therein.

On the other hand, the problem (1.1) derive from the following Logarithmic Schrödinger equation −∆u + V(x)u = |u|q−2u ln u2, x ∈ Ω

u ∈ H1
0(Ω).

(1.5)

Recently, there are many results about Logarithmic Schrödinger equation like (1.5), see [26,29–37]
and references therein. Moreover, some scholars considered sign-changing solutions to Logarithmic
Schrödinger equation like (1.5) [26, 33].

Motivated by the works mentioned above, especially by [9,10,26], in the present paper, we consider
the existence of ground state sign-changing solutions for problem (1.1).

Denote W1,p
0 (Ω) the usual Sobolev space equipped with the norm

‖u‖p =
∫

Ω
|∇u|pdx.

The usual Lp(Ω) norm is denote by |u|pp =
∫

Ω
|u|pdx. And we define the energy functional of problem

(1.1) as follow:

Φ(u) =
a
p

∫
Ω

|∇u|pdx +
b

2p
(
∫

Ω

|∇u|pdx)2 +
2
q2

∫
Ω

|u|qdx −
1
q

∫
Ω

|u|q ln u2dx,

for any u ∈ W1,p
0 (Ω).

Moreover, under our conditions, Φ(u) belongs to C1, and the Fréchet derivative of Φ is
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〈Φ′(u), v〉 = a
∫

Ω

|∇u|p−2∇u · ∇vdx + b(
∫

Ω

|∇u|pdx)(
∫

Ω

|∇u|p−2∇u · ∇vdx)

−

∫
Ω

|u|q−2uv ln u2dx,

for any u, v ∈ W1,p
0 (Ω).

The solution of problem (1.1) is the critical point of the functional Φ(u). Furthermore, if u ∈ W1,p
0 (Ω)

is a solution of problem (1.1) and u± , 0, then u is a sign-changing solution of problem (1.1), where

u+ = max{u(x), 0}, u− = min{u(x), 0}.

It is noticed that

Φ(u) = Φ(u+) + Φ(u+) +
b
p
‖u+‖p‖u−‖p, if u± . 0,

〈Φ′(u), u+〉 = 〈Φ′(u+), u+〉 + b‖u+‖p‖u−‖p, if u± . 0,
〈Φ′(u), u−〉 = 〈Φ′(u−), u−〉 + b‖u+‖p‖u−‖p, if u± . 0.

The main results can be stated as follows.

Theorem 1.1. The problem (1.1) has a sign-changing u0 ∈ M with precisely two nodal domains such
that Φ(u0) = in fMΦ := m, where

M = {u ∈ W1,p
0 (Ω), u± , 0, and 〈Φ′(u), u+〉 = 〈Φ′(u), u−〉 = 0}.

Theorem 1.2. The problem (1.1) has a solutions u0 ∈ N such that Φ(u0) = in fNΦ := c, where
N = {u ∈ W1,p

0 (Ω), u , 0, and 〈Φ′(u), u〉 = 0}. Moreover, m ≥ 2c.

Remark 1.1. The Kirchhoff function M(t) = a + btn(n > 0, a > 0, b ≥ 0) can be regarded as the special
case of the function M : R+ → R+ satisfying the following conditions:
(M1) M ∈ C(R+) satisfies inft∈R+ M(t) ≥ m0 > 0, where m0 is a constant;
(M2) There exists θ ≥ 1 such that θM = θ

∫ t

0
M(τ)dτ ≥ M(t)t for any t ≥ 0.

In this paper, we consider this problem under condition M(t) = a + bt. From details in proof of Lemma
2.1 (see later), we can not obtain result similar as Lemma 2.1 for the case of Kirchhoff equations of the
general forms. However, Lemma 2.1 play an important role in proof of main resuls. So, for the case of
Kirchhoff equations of the general forms, the methods in this paper seems not valid.

2. Technical lemmas

Lemma 2.1. For all u ∈ W1,p
0 (Ω) and s, t ≥ 0 there holds

Φ(u) ≥ Φ(su+ + tu−) +
1 − sq

q
〈Φ′(u), u+〉 +

1 − tq

q
〈Φ′(u), u−〉 + a(

1 − sp

p
−

1 − sq

q
)‖u+‖p

+ a(
1 − tp

p
−

1 − tq

q
)‖u−‖p + b[(

1 − s2p

2p
−

1 − sq

q
)‖u+‖2p + (

1 − t2p

2p
−

1 − tq

q
)‖u−‖2p]

+ b[
s2p + t2p − 2sptp

2p
]‖u+‖p‖u−‖p. (2.1)
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Proof. Since (2.1) holds when u = 0, in the following, we always assume that u , 0. It is easy to see
that

2(1 − τq) + qτq ln τ2 > 0,∀τ ∈ (0, 1) ∪ (1,∞). (2.2)

Let Ω+ = {x ∈ Ω : u(x) > 0} and Ω− = {x ∈ Ω : u(x) < 0}. For any u ∈ W1,p
0 (Ω) \ {0}, we have that∫

Ω

|su+ + tu−|q ln(su+ + tu−)2dx

=

∫
Ω+

|su+ + tu−|q ln(su+ + tu−)2dx +

∫
Ω−
|su+ + tu−|q ln(su+ + tu−)2dx

=

∫
Ω+

|su+|q ln(su+)2dx +

∫
Ω−
|su−|q ln(su−)2dx

=

∫
Ω

[|su+|q ln(su+)2] + |tu−|q ln(tu−)2dx

=

∫
Ω

[|su+|q(ln s2 + ln(u+)2) + |tu−|q(ln t2 + ln(u−)2)]dx. (2.3)

Combining (2.2) with (2.3), we obtain

Φ(u)−Φ(su+ + tu−) =
a
p

(‖u‖p − ‖su+ + tu−‖p) +
b

2p
(‖u‖2p − ‖su+ + tu−‖2p)

+
2
q2

∫
Ω

|u|q − |su+ + tu−|qdx −
1
q

∫
Ω

|u|q ln u2 − |su+ + tu−|q ln(su+ + tu−)2dx

=
a
p

(‖u‖p − sp‖u+‖p − tp‖u−‖p) +
b

2p
(‖u‖2p − s2p‖u+‖2p − t2p‖u−‖2p)

− 2sptp‖u+‖p‖u−‖p) +
2
q2

∫
Ω

|u+|q + |u−|q − sq|u+|q − tq|u−|qdx −
1
q

∫
Ω

(|u+|q ln(u+)2

+ |u−|q ln(u−)2 − |su+|q ln s2 − |su+|q ln(u+)2 − |tu−|q ln t2 − |tu−|q ln(u−)2)dx

=
a
p

(1 − sp)‖u+‖p +
a
p

(1 − tp)‖u−‖p +
b

2p
(1 − s2p)‖u+‖2p

+
b

2p
(1 − t2p)‖u−‖2p +

b
p

(1 − sptp)‖u+‖p‖u−‖p +
2
q2

∫
Ω

(|u+|q − |su+|q + |u−|q − |tu−|q)dx

−
1
q

∫
Ω

(|u+|q ln(u+)2 − |su+|q ln(su+)2)dx −
1
q

∫
Ω

(|u−|q ln(u−)2 − |tu−|q ln(tu−)2)dx

=
1 − sq

q
〈Φ′(u), u+〉 +

1 − tq

q
〈Φ′(u), u−〉 + a(

1 − sp

p
−

1 − sq

q
)‖u+‖p

+ a(
1 − tp

p
−

1 − tq

q
)‖u−‖p + b((

1 − s2p

2p
−

1 − sq

q
)‖u+‖2p + (

1 − t2p

2p
−

1 − tq

q
)‖u−‖2p)

+ b(
1 − sptp

p
−

1 − sq

q
−

1 − tq

q
)‖u+‖p‖u−‖p +

2(1 − sq) + qsq ln s2

q2 |u+|qq

+
2(1 − tq) + qtq ln t2

q2 |u−|qq
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≥
1 − sq

q
〈Φ′(u), u+〉 +

1 − tq

q
〈Φ′(u), u−〉 + a(

1 − sp

p
−

1 − sq

q
)‖u+‖p

+ a(
1 − tp

p
−

1 − tq

q
)‖u−‖p + b((

1 − s2p

2p
−

1 − sq

q
)‖u+‖2p + (

1 − t2p

2p
−

1 − tq

q
)‖u−‖2p)

+ b[
s2p + t2p − 2sptp

2p
]‖u+‖p‖u−‖p, (2.4)

which implies that (2.2) holds. �

According to Lemma 2.1, we can obtain the following corollaries.

Corollary 2.1. For all u ∈ W1,p
0 (Ω) and t ≥ 0, we have that

Φ(u) ≥ Φ(tu) +
1 − tq

q
〈Φ′(u), u〉 + a(

1 − tp

p
−

1 − tq

q
)‖u‖p. (2.5)

Corollary 2.2. For any u ∈ M, we have that

Φ(u) = max
s,t≥0

Φ(su+ + tu−).

Corollary 2.3. For any u ∈ N , we have that

Φ(u) = max
t≥0

Φ(tu).

Lemma 2.2. For any u ∈ W1,p
0 (Ω) with u± , 0, there exists an unique pair (su, tu) of positive numbers

such that suu+ + tuu− ∈ M.

Proof. Firstly, for any u ∈ W1,p
0 (Ω) with u± , 0, we prove the existence of (su, tu). Let

G(s, t) = 〈Φ′(su+ + tu−), su+〉 = asp‖u+‖p + bs2p‖u+‖2p

+ bsptp‖u+‖p‖u−‖p −

∫
Ω

|su+|q ln(su+)2dx, (2.6)

and

H(s, t) = 〈Φ′(su+ + tu−), tu−〉 = atp‖u+‖p + bt2p‖u−‖2p

+ bsptp‖u+‖p‖u−‖p −

∫
Ω

|tu−|q ln(tu−)2dx. (2.7)

From assumptions, we have that

limt→0
|t|q−1 ln t2

|t|p−1 = 0; limt→∞
|t|q−1 ln t2

|t|r−1 = 0, r ∈ (q, p∗).

Then for any ε > 0, there exists Cε > 0 such that

|t|q−1 ln t2 ≤ ε|t|p−1 + Cε|t|r−1. (2.8)
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Since 4 ≤ 2p < q < p∗, it follows from (2.8) that

G(s, s) > 0 and H(s, s) > 0 for s > 0 small enough,
G(t, t) > 0 and H(t, t) > 0 for t > 0 large enough.

Thus, there exist 0 < α < β such that

G(α, α) > 0, H(α, α) > 0; G(β, β) < 0, H(β, β) < 0. (2.9)

Thanks to (2.6), (2.7) and (2.9), we have that

G(α, t) > 0, G(β, t) < 0, ∀t ∈ [α, β] (2.10)

and

H(s, α) > 0, H(s, β) < 0, ∀s ∈ [α, β]. (2.11)

So, combining (2.10), (2.11) with Miranda’s Theorem [38], there exists some point (su, tu) with
α < su, tu < β such that

G(su, tu) = H(su, tu) = 0.

That is, there exists a pair (su, tu) of positive numbers such that suu+ + tuu− ∈ M.
Secondly, we prove that (su, tu) is unique.
Arguing by contradiction, we assume that there exist two pair (si, ti), i = 1, 2 such that s1u+ + t1u− ∈

M and s2u+ + t2u− ∈ M.
According to corollary 2.2, we have that

Φ(s1u+ + t1u−) ≥ Φ(s2u+ + t2u−) + asp
1(

1 − ( s2
s1

)p

p
−

1 − ( s2
s1

)q

q
)‖u+‖p, (2.12)

Φ(s2u+ + t2u−) ≥ Φ(s1u+ + t1u−) + asp
2(

1 − ( s1
s2

)p

p
−

1 − ( s1
s2

)q

q
)‖u+‖p. (2.13)

It is noticed that

h(x) = 1−sx

x is monotonically decreasing on (0,∞) for s > 0 and s , 1.

Therefore, by (2.12) and (2.13), we have that (s1, t1) = (s2, t2). That is, (su, tu) is unique. �

Lemma 2.3. For any u ∈ W1,p
0 (Ω) with u , 0, there exists an unique tu > 0 such that tuu ∈ N .

Proof. Since the proof is similar to that of Lemma 2.2, we omit detail here. �

Through the standard discussions, we have following result.

Lemma 2.4. The following minimax characterization hold

c = inf
u∈W1,p

0 (Ω),u,0
max

t≥0
Φ(tu), m = inf

u∈W1,p
0 (Ω),u,0

max
s,t≥0

Φ(su+ + tu−).

Lemma 2.5. m > 0 is achieved.
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Proof. For any u ⊂ M, we have 〈Φ′(u), u〉 = 0 and then

a‖u‖p ≤ a‖u‖p + b‖u‖2p =

∫
Ω

|u|q ln u2dx

≤ C1‖u‖q + C2‖u‖r. (2.14)

Since q, r > p, there exists a constant ρ > 0 such that ‖u‖ ≥ ρ for any u ⊂ M.
Let un ⊂ M be such that Φ(un) → m, then un is bounded in W1,p

0 . Thus, there exists u0, in
subsequence sense, such that

u±n ⇀ u±0 in W1,p
0 (Ω)

u±n → u±0 in Ls(Ω), p ≤ s < p∗

Since un ⊂ M, one has 〈Φ′(un), u±n 〉 = 0, that is

aρp ≤ a‖u±n ‖
p ≤ a‖u±n ‖

p + b‖u±n ‖
2p + b‖u+

n ‖
p‖u−n ‖

p =

∫
Ω

|u±n |
q ln(u±n )2dx

≤ ε

∫
Ω

|u±n |
qdx + Cε

∫
Ω

|u±n |
rdx ≤ C4

∫
Ω

|u±n |
rdx (2.15)

By the compactness of the embedding W1,p
0 (Ω) ↪→ Lr(Ω), we get

C5ρ
p ≤

∫
Ω

|u±0 |
rdx,

which implies u±0 , 0.
By the Lebesgue dominated convergence theorem and the weak semicontinuity of norm, we have

a‖u±0 ‖
p + b‖u+

0 ‖
2p + b‖u+

0 ‖
p‖u−0 ‖

p ≤ lim inf
n→∞

(a‖u±n ‖
p + b‖u+

n ‖
2p + b‖u+

n ‖
p‖u−n ‖

p)

= lim inf
n→∞

∫
Ω

|u±n |
q ln(u±n )2dx

=

∫
Ω

|u±0 |
q ln(u±0 )2dx,

that is,

〈Φ′(u0), u+
0 〉 ≤ 0 and 〈Φ′(u0), u−0 〉 ≤ 0.

Since u±0 , 0, it follows from Lemma 2.2 that there exist constants s, t > 0 such that su+
0 + tu−0 ∈ M.

From corollary 2.2, corollary 2.3 and the weak semicontinuity of norm, we have that

m = lim
n→∞

[Φ(un) −
1
q
〈Φ′(un), un〉]

= lim
n→∞

[(
a
p
−

a
q

)‖un‖
p + (

b
2p
−

b
q

)‖un‖
2p +

2
q2 |un|

q
q]

≥ (
a
p
−

a
q

)‖u0‖
p + (

b
2p
−

b
q

)‖u0‖
2p +

2
q2 |u0|

q
q
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= Φ(u0) −
1
q
〈Φ′(u0, u0〉

≥ Φ(su+
0 + tu−0 ) +

1 − sq

q
〈Φ′(u0), u+

0 〉 +
1 − tq

q
〈Φ′(u0), u−0 〉 −

1
q
〈Φ′(u0, u0〉

≥ m −
sq

q
〈Φ′(u0), u+

0 〉 −
tq

q
〈Φ′(u0), u−0 〉

≥ m,

which asserts
〈Φ′(u0), u±0 〉 = 0, Φ(u0) = m.

Furthermore, thanks to u±0 , 0 and (2.1), we have that

m = Φ(u0) ≥ a(
1
p
−

1
q

)‖u+
0 ‖

p + a(
1
p
−

1
q

)‖u−0 ‖
p > 0.

�

3. Proof main results

Proof of Theorem 1.1 :

Proof. Firstly, thanks to Lemma 2.5, we prove the minimizer u0 of infMΦ is critical point of Φ.
Arguing by contradiction, we assume that Φ′(u0) , 0. Then there exist δ > 0 and ς > 0 such that

‖(Φ′(u)‖ ≥ ς, for all ‖u − u0‖ ≤ 3δ and u ∈ W1,p
0 (Ω).

Let D := ( 1
2 ,

3
2 ) × (1

2 ,
3
2 ), by Lemma 2.1, one has

ε := max
(s,t)∈∂D

Φ(su+
0 + tu−0 ) < m. (3.1)

For ε := min (m − ε)/3, δς/8} and S δ := B(u0, δ), according to Lemma 2.3 in [39], there exists a
deformation η ∈ C([0, 1] ×W1,p

0 (Ω),W1,p
0 (Ω)) such that

(a) η(1, v) = v if v < Φ−1([m − 2ε,m + 2ε]) ∩ S 2δ;

(b) η(1, (Φm+ε ∩ S δ) ⊂ Φm−ε, where Φc = {u ∈ W1,p
0 (Ω) : Φ(u) ≤ c};

(c) Φ(η(1, v)) ≤ Φ(v) for all v ∈ W1,p
0 (Ω).

By Lemma 2.1 and (c), we have

Φ(η(1, su+
0 + tu−0 ) ≤ Φ(su+

0 + tu−0 ) < Φ(u0)
= m, ∀s, t ≥ 0, |s − 1|2 + |t − 1|2 ≥ δ2/‖u0‖

2. (3.2)

On the other hand, by Corollary 2.3, we can obtain that Φ(su+
0 + tu−0 ) ≤ Φ(u0) = m for s, t > 0. Then

it follows from (b) that

Φ(η(1, su+
0 + tu−0 ) ≤ m − ε, ∀s, t ≥ 0, |s − 1|2 + |t − 1|2 < δ2/‖u0‖

2. (3.3)

So, thanks to (3.2) and (3.3), one has

max
(s,t)∈D̄

Φ(η(1, su+
0 + tu−0 ) < m. (3.4)
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Let k(s, t) = su+
0 + tu−0 , we now prove that η(1, k(D)) ∩M , ∅. Let γ(s, t) := η(1, k(s, t))

Ψ0(s, t) := (〈Φ′(k(s, t)), u+
0 〉, 〈Φ

′(k(s, t)), u−0 〉)
= (〈Φ′(su+

0 + tu−0 ), u+
0 〉, 〈Φ

′(su+
0 + tu−0 ), u−0 〉)

:= (h1(s, t), h2(s, t))

and

Ψ1(s, t) := (
1
s
〈Φ′(γ(s, t)), (γ(s, t))

+

〉,
1
t
〈Φ′(γ(s, t)), (γ(s, t))

−

〉).

Clearly, Ψ0 is a C1 functions and by a direct calculation, we have

∂h1(s, t)
∂s

|(1,1) = a(p − 1)‖u+
0 ‖

p + b(2p − 1)‖u+
0 ‖

2p + b(p − 1)‖u+
0 ‖

p‖u−0 ‖
p

− (q − 1)
∫

Ω

|u+
0 |

q ln(u+
0 )2dx − 2

∫
Ω

|u+
0 |

qdx

= bp‖u+
0 ‖

2p − (q − p)
∫

Ω

|u+
0 |

q ln(u+
0 )2dx − 2

∫
Ω

|u+
0 |

pdx,

∂h1(s, t)
∂t

|(1,1) = bp‖u+
0 ‖

p‖u−0 ‖
p.

Similarly, we have

∂h2(s, t)
∂t

|(1,1) = bp‖u−0 ‖
2p − (q − p)

∫
Ω

|u−0 |
q ln(u−0 )2dx − 2

∫
Ω

|u−0 |
pdx,

∂h2(s, t)
∂s

|(1,1) = bp‖u+
0 ‖

p‖u−0 ‖
p.

Let

M =

[ ∂h1(s,t)
∂s |(1,1)

∂h2(s,t)
∂s |(1,1)

∂h1(s,t)
∂t |(1,1)

∂h2(s,t)
∂t |(1,1)

]
,

then we have that

det M =
∂h1(s, t)
∂s

|(1,1) ×
∂h2(s, t)
∂t

|(1,1) −
∂h1(s, t)
∂t

|(1,1) ×
∂h2(s, t)
∂s

|(1,1) , 0.

Therefore, by topological degree theory [40–42], we conclude that Ψ1(s0, t0) = 0 for some (s0, t0) ∈
D, so that η(1, k(s0, t0)) = γ(s0, t0) ∈ M, which is contradicted to (3.4).

Next, we prove u0 has two nodal domains.
We assume that

u0 = u1 + u2 + u3

where
u1 ≥ 0, u2 ≤ 0, Ω1 ∩Ω2 = ∅, u1 |Ω\Ω1∪Ω2= u2 |Ω\Ω1∪Ω2= u3 |Ω1∪Ω2= 0,
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Ω1 := {x ∈ Ω, u1(x) > 0} and Ω2 := {x ∈ Ω, u2(x) < 0}

are two connected open subsets of Ω.
Setting v := u1 + u2, we see that v+ = u1 and v− = u2, i.e., v± , 0. According to 〈Φ′(u0), v±〉 = 0, we

have that

〈Φ′(v), v±〉 = −b‖v±‖p‖u3‖
p. (3.5)

Thanks to (2.1) and (3.5), we have that

m = Φ(u0) = Φ(u0) −
1
q
〈Φ′(u0), u0〉

= Φ(v) + Φ(u3) +
b
p
‖u3‖

p‖v‖p −
1
q

(〈Φ′(v), v〉 + 〈Φ′(u3), u3〉 + 2b‖u3‖
p‖v‖p)

≥ sup
s,t≥0

(Φ(sv+ + tv−) +
1 − sq

q
〈Φ′(v), v+〉 +

1 − tq

q
〈Φ′(v), v−〉)

+ Φ(u3) −
1
q
〈Φ′(v), v〉 −

1
q
〈Φ′(u3), u3〉

≥ sup
s,t≥0

(Φ(sv+ + tv−) +
b
q

sp‖v+‖p‖u3‖
p +

b
q

tp‖v−‖p‖u3‖
p)

+ a(
1
p
−

1
q

)‖u3‖
p + b(

1
2p
−

1
q

)‖u3‖
2p +

2
q2 |u3|

q
q

≥ m + a(
1
p
−

1
q

)‖u3‖
p,

which implies u3 = 0. That is, u0 has two nodal domains. �

Proof of Theorem 1.2 :

Proof. Similar as the proof of Lemma 2.5, there exists v0 ∈ N such that Φ(v0) = c > 0. By arguments
similar to that of Theorem 1.1, the critical points of the functional Φ on N are critical points of Φ

in W1,p
0 (Ω) and we obtain (Φ)′(v0) = 0. It follows from definitions of c = in fNΦ and N = {u ∈

W1,p
0 (Ω), u , 0, and 〈Φ′(u), u〉 = 0} that v0 is a ground state solution of (1.1).
According to Theorem 1.1, there exists a u0 ∈ M such that Φ(u0) = m,Φ′(u0) = 0. Therefore, by

Corollary 2.2 and Lemma 2.4, we have that

m = Φ(u0) = sup
s,t≥0

Φ(su+
0 + tu−0 )

= sup
s,t≥0

(Φ(su+
0 ) + Φ(tu−0 ) +

b
p

sptp‖u+
0 ‖

p‖u−0 ‖
p)

≥ sup
s≥0

Φ(su+
0 ) + sup

t≥0
Φ(tu−0 ) ≥ 2c > 0.

The proof of Theorem 2.2 is completed. �
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4. Conclusions

In this paper, by using constraint variational method, topological degree theory and the quantitative
deformation lemma, we prove the existence of ground state sign-changing solutions with precisely
two nodal domains for a class of p-Laplacian Kirchhoff-type problem (special form) with logarithmic
nonlinearity. However, for the case of Kirchhoff equations of the general forms, the methods in this
paper seems not valid. So, we will continuous discuss sign-changing solutions for general Kirchhoff

equations with logarithmic nonlinearity in the follow-up work.
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