Sylow's theorems are fundamental theorems in classical group theory that are of paramount importance. The extension of these theorems into diverse fuzzy contexts emerges as a compelling area of exploration. This study introduces the novel concept of the conjunctive complex fuzzy conjugate element within the conjunctive complex fuzzy subgroup of a group, elucidating numerous crucial properties of this concept. Additionally, it propounds the notion of the conjunctive complex fuzzy p-subgroup within the conjunctive complex fuzzy subgroup (CCFSG) and delineates various indispensable characteristics associated with this construct. Additionally, the paper formulates the conjunctive complex fuzzy version of the Cauchy theorem for finite groups. Lastly, it defines the concept of the conjunctive complex fuzzy Sylow p-subgroup for a finite group and conducts a generalization of Sylow's theorems within a conjunctive complex fuzzy environment.
Citation: Aneeza Imtiaz, Hanan Alolaiyan, Umer Shuaib, Abdul Razaq, Jia-Bao Liu. Applications of conjunctive complex fuzzy subgroups to Sylow theory[J]. AIMS Mathematics, 2024, 9(1): 38-54. doi: 10.3934/math.2024003
Sylow's theorems are fundamental theorems in classical group theory that are of paramount importance. The extension of these theorems into diverse fuzzy contexts emerges as a compelling area of exploration. This study introduces the novel concept of the conjunctive complex fuzzy conjugate element within the conjunctive complex fuzzy subgroup of a group, elucidating numerous crucial properties of this concept. Additionally, it propounds the notion of the conjunctive complex fuzzy p-subgroup within the conjunctive complex fuzzy subgroup (CCFSG) and delineates various indispensable characteristics associated with this construct. Additionally, the paper formulates the conjunctive complex fuzzy version of the Cauchy theorem for finite groups. Lastly, it defines the concept of the conjunctive complex fuzzy Sylow p-subgroup for a finite group and conducts a generalization of Sylow's theorems within a conjunctive complex fuzzy environment.
[1] | A. Idelhaj, The Sylow theorems and their applications, 2016, 1–8. |
[2] | K. Conrad, Consequences of the Sylow theorems, Matrix, 1 (2016), 1–20. |
[3] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[4] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5 |
[5] | P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264–269. |
[6] | N. P. Mukherjee, P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci., 34 (1984), 225–239. https://doi.org/10.1016/0020-0255(84)90050-1 doi: 10.1016/0020-0255(84)90050-1 |
[7] | A. S. Mashour, M. H. Ghanim, F. I. Sidky, Normal fuzzy subgroups, Inform. Sci., 20 (1990), 53–59. |
[8] | N. Ajmal, I. Jahan, A study of normal fuzzy subgroups and characteristic fuzzy subgroups of a fuzzy group, Fuzzy Inform. Eng., 4 (2012), 123–143. https://doi.org/10.1007/s12543-012-0106-0 doi: 10.1007/s12543-012-0106-0 |
[9] | S. Abdullah, M. Aslam, T. A. Khan, M. Naeem, A new type of fuzzy normal subgroups and fuzzy cosets, J. Intell. Fuzzy Syst., 25 (2013), 37–47. http://dx.doi.org/10.3233/IFS-2012-0612 doi: 10.3233/IFS-2012-0612 |
[10] | M. Tarnauceanu, Classifying fuzzy normal subgroups of finite groups, Iran. J. Fuzzy Syst., 12 (2015), 107–115. https://doi.org/10.22111/ijfs.2015.1986 doi: 10.22111/ijfs.2015.1986 |
[11] | J. J. Buckley, Fuzzy complex numbers, Fuzzy Sets Syst., 33 (1989), 333–345. https://doi.org/10.1016/0165-0114(89)90122-X doi: 10.1016/0165-0114(89)90122-X |
[12] | J. J. Buckley, Y. X. Qu, Fuzzy complex analysis Ⅰ: Differentiation, Fuzzy Sets Syst., 41 (1991), 269–284. https://doi.org/10.1016/0165-0114(91)90131-9 doi: 10.1016/0165-0114(91)90131-9 |
[13] | J. J. Buckley, Fuzzy complex analysis Ⅱ: Integration, Fuzzy Sets Syst., 49 (1992), 171–179. https://doi.org/10.1016/0165-0114(92)90322-U doi: 10.1016/0165-0114(92)90322-U |
[14] | G. Q. Zhang, Fuzzy limit theory of fuzzy complex numbers, Fuzzy Sets Syst., 46 (1992), 227–235. https://doi.org/10.1016/0165-0114(92)90135-Q doi: 10.1016/0165-0114(92)90135-Q |
[15] | G. Ascia, V. Catania, M. Russo, VLSI hardware architecture for complex fuzzy systems, IEEE Trans. Fuzzy Syst., 7 (1999), 553–570. https://doi.org/10.1109/91.797979 doi: 10.1109/91.797979 |
[16] | D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Trans. Fuzzy Syst., 11 (2003), 450–461. https://doi.org/10.1109/TFUZZ.2003.814832 doi: 10.1109/TFUZZ.2003.814832 |
[17] | A. Al-Husban, A. R. Salleh, N. Hassan, Complex fuzzy normal subgroup, In: AIP Conference Proceedings, 1678 (2015), 060008. https://doi.org/10.1063/1.4931335 |
[18] | A. Al-Husban, A. R. Salleh, Complex fuzzy hypergroups based on complex fuzzy spaces, Int. J. Pure Appl. Math., 107 (2016), 949–958. http://dx.doi.org/10.12732/ijpam.v107i4.12 doi: 10.12732/ijpam.v107i4.12 |
[19] | A. Al-Husban, A. R. Salleh, Complex fuzzy group based on complex fuzzy space, Global J. Pure Appl. Math., 12 (2016), 1433–1450. |
[20] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subgroups, Appl. Math. Sci., 11 (2017), 2011–2021. https://doi.org/10.12988/AMS.2017.64115 doi: 10.12988/AMS.2017.64115 |
[21] | R. Al-Husban, A. R. Salleh, A. G. B. Ahmad, Complex intuitionistic fuzzy normal subgroup, Int. J. Pure Appl. Math., 115 (2017), 455–466. http://dx.doi.org/10.12732/ijpam.v115i3.1 doi: 10.12732/ijpam.v115i3.1 |
[22] | B. Hu, L. Q. Bi, S. S. Dai, S. Z. Li, Distances of complex fuzzy sets and continuity of complex fuzzy operations, J. Intell. Fuzzy Syst., 35 (2018), 2247–2255. https://doi.org/10.3233/JIFS-172264 doi: 10.3233/JIFS-172264 |
[23] | Y. Al-Qudah, N. Hassan, Complex multi-fuzzy relation for decision making using uncertain periodic data, Int. J. Eng. Technol., 7 (2018), 2437–2445. http://dx.doi.org/10.14419/ijet.v7i4.16976 doi: 10.14419/ijet.v7i4.16976 |
[24] | B. Hu, L. Q. Bi, S. S. Dai, S. Z. Li, The approximate parallelity of complex fuzzy sets, J. Intell. Fuzzy Syst., 35 (2018), 6343–6351. https://doi.org/10.3233/JIFS-181131 doi: 10.3233/JIFS-181131 |
[25] | L. Q. Bi, S. S. Dai, B. Hu, Complex fuzzy geometric aggregation operators, Symmetry, 10 (2018), 1–14. https://doi.org/10.3390/sym10070251 doi: 10.3390/sym10070251 |
[26] | L. Q. Bi, Z. Q. Zeng, B. Hu, S. S. Dai, Two classes of entropy measures for complex fuzzy sets, Mathematics, 7 (2019), 1–10. https://doi.org/10.3390/math7010096 doi: 10.3390/math7010096 |
[27] | S. S. Dai, L. Q. Bi, B. Hu, Distance measures between the interval-valued complex fuzzy sets, Mathematics, 7 (2019), 1–12. https://doi.org/10.3390/math7060549 doi: 10.3390/math7060549 |
[28] | A. U. M. J. Alkouri, M. O. Massa'deh, M. Ali, On bipolar complex fuzzy sets and its application, J. Intell. Fuzzy Syst., 39 (2020), 383–397. https://doi.org/10.3233/JIFS-191350 doi: 10.3233/JIFS-191350 |
[29] | A. Imtiaz, U. Shuaib, H. Alolaiyan, A. Razaq, M. Gulistan, On structural properties of ξ-complex fuzzy sets and their applications, Complexity, 2020 (2020), 1–13. https://doi.org/10.1155/2020/2038724 doi: 10.1155/2020/2038724 |
[30] | R. Chinram, T. Mahmood, U. Ur Rehman, Z. Ali, A. Iampan, Some novel cosine similarity measures based on complex hesitant fuzzy sets and their applications, J. Math., 2021 (2021), 1–20. https://doi.org/10.1155/2023/9760804 doi: 10.1155/2023/9760804 |
[31] | H. F. Song, L. Q. Bi, B. Hu, Y. Y. Xu, S. S. Dai, New distance measures between the interval-valued complex fuzzy sets with applications to decision-making, Math. Problems Eng., 2021 (2021), 1–9. https://doi.org/10.1155/2021/6685793 doi: 10.1155/2021/6685793 |
[32] | M. Akram, A. Sattar, F. Karaaslan, S. Samanta, Extension of competition graphs under complex fuzzy environment, Complex Intell. Syst., 7 (2021), 539–558. http://dx.doi.org/10.1007/s40747-020-00217-5 doi: 10.1007/s40747-020-00217-5 |
[33] | A. Imtiaz, U. Shuaib, A. Razaq, M. Gulistan, Image development in the framework of ξ-complex fuzzy morphisms, J. Intell. Fuzzy Syst., 40 (2021), 4425–4437. https://doi.org/10.3233/JIFS-201261 doi: 10.3233/JIFS-201261 |
[34] | N. Jan, A. Nasir, M. S. Alhilal, S. U. Khan, D. Pamucar, A. Alothaim, Investigation of cyber-security and cyber-crimes in oil and gas sectors using the innovative structures of complex intuitionistic fuzzy relations, Entropy, 23 (2021), 1–27. https://doi.org/10.3390/e23091112 doi: 10.3390/e23091112 |
[35] | A. Imtiaz, U. Shuaib, On conjunctive complex fuzzification of Lagrange's theorem of ξ-CFSG, AIMS Math., 8 (2023), 18881–18897. https://doi.org/10.3934/math.2023961 doi: 10.3934/math.2023961 |