The enumeration of fuzzy subgroups is a complex problem. Several authors have computed results for special instances of groups. In this paper, we present a novel algorithm that is designed to enumerate the fuzzy subgroups of a finite group. This is achieved through the computation of maximal chains of subgroups. This approach is also useful for writing a program to compute the number of fuzzy subgroups. We provide further elucidation by computing the number of fuzzy subgroups of the groups $ Q_8 $ and $ D_8 $.
Citation: Adeel Farooq, Musawwar Hussain, Muhammad Yousaf, Ahmad N. Al-Kenani. A new algorithm to compute fuzzy subgroups of a finite group[J]. AIMS Mathematics, 2023, 8(9): 20802-20814. doi: 10.3934/math.20231060
The enumeration of fuzzy subgroups is a complex problem. Several authors have computed results for special instances of groups. In this paper, we present a novel algorithm that is designed to enumerate the fuzzy subgroups of a finite group. This is achieved through the computation of maximal chains of subgroups. This approach is also useful for writing a program to compute the number of fuzzy subgroups. We provide further elucidation by computing the number of fuzzy subgroups of the groups $ Q_8 $ and $ D_8 $.
[1] | L. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. 10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | A. Rosenfeld, Fuzzy subgroups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5 |
[3] | G. Li, G. Kou, Y. Li, Y. Peng, A group decision making approach for supplier selection with multi-period fuzzy information and opinion interaction among decision makers, J. Oper. Res. Soc., 73 (2022), 855–868. https://doi.org/10.1080/01605682.2020.1869917 doi: 10.1080/01605682.2020.1869917 |
[4] | N. Pal, S. Pal, A review on image segmentation techniques, Pattern Recogn., 26 (1993), 1277–1294. https://doi.org/10.1016/0031-3203(93)90135-J doi: 10.1016/0031-3203(93)90135-J |
[5] | H. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Set. Syst., 1 (1978), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3 doi: 10.1016/0165-0114(78)90031-3 |
[6] | P. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264–269. https://doi.org/10.1016/0022-247X(81)90164-5 doi: 10.1016/0022-247X(81)90164-5 |
[7] | H. Sherwood, Products of fuzzy subgroups, Fuzzy Set. Syst., 11 (1983), 79–89. https://doi.org/10.1016/S0165-0114(83)80070-0 doi: 10.1016/S0165-0114(83)80070-0 |
[8] | L. Filep, Structure and construction of fuzzy subgroups of a group, Fuzzy Set. Syst., 51 (1992), 105–109. https://doi.org/10.1016/0165-0114(92)90081-E doi: 10.1016/0165-0114(92)90081-E |
[9] | V. Murali, B. Makamba, Counting the number of fuzzy subgroups of an abelian group of order $p^{n} q^{m}$, Fuzzy Set. Syst., 144 (2004), 459–470. https://doi.org/10.1016/S0165-0114(03)00224-0 doi: 10.1016/S0165-0114(03)00224-0 |
[10] | A. Volf, Fuzzy subgroups and chains of subgroups, J. Fire Secur. Assoc. India, 10 (2004), 87–98. |
[11] | L. Bentea, M. T$\check{a}$rn$\check{a}$uceanu, A note on the number of fuzzy subgroups of finite groups, Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica, 1 (2008), 209–220. |
[12] | M. T$\check{a}$rn$\check{a}$uceanu, L. Bentea, On the number of fuzzy subgroups of finite abelian groups, Fuzzy Set. Syst., 159 (2008), 1084–1096. https://doi.org/10.1016/j.fss.2007.11.014 doi: 10.1016/j.fss.2007.11.014 |
[13] | H. Darabi, F. Saeedi, M. Farrokhi, The number of fuzzy subgroups of some non-abelian groups, Iran. J. Fuzzy Syst., 10 (2013), 101–107. |
[14] | H. Darabi, M. Imanparast, Counting number of fuzzy subgroups of some of dihedral groups, Int. J. Pure Appl. Math., 85 (2013), 563–575. http://dx.doi.org/10.12732/ijpam.v85i3.11 doi: 10.12732/ijpam.v85i3.11 |
[15] | A. Sehgal, S. Sehgal, P. Sharma, The number of fuzzy subgroups of a finite dihedral $D_{p^{n} q^{m}}$, Int. J. Fuzzy Math. Arch., 8 (2015), 51–57. |
[16] | R. Sulaiman, B. Prawoto, Computing the number of fuzzy subgroups by expansion method, Int. Electron. J. Pure Appl. Math., 8 (2014), 53–58. http://dx.doi.org/10.12732/iejpam.v8i4.6 doi: 10.12732/iejpam.v8i4.6 |
[17] | R. Sulaiman, B. Prawoto, The number of fuzzy subgroups of rectangle groups, Int. J. Algebr., 8 (2014), 17–23. http://dx.doi.org/10.12988/ija.2014.311121 doi: 10.12988/ija.2014.311121 |
[18] | H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel algebraic structure of $(\alpha, \beta)$-complex fuzzy subgroups, Entropy, 23 (2021). https://doi.org/10.3390/e23080992 doi: 10.1080/16168658.2022.2119828 |
[19] | L. K. Ardekani, B. Davvaz, On the subgroups Lattice and fuzzy subgroups of finite groups $U_6n$, Fuzzy Inform. Eng., 14 (2022), 152–166. http://dx.doi.org/10.1080/16168658.2022.2119828 doi: 10.1080/16168658.2022.2119828 |
[20] | J. Oh, An explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group of rank two, Iran. J. Fuzzy Syst., 10 (2013), 125–135. http://dx.doi.org/10.22111/IJFS.2013.1335 doi: 10.22111/IJFS.2013.1335 |
[21] | The GAP group, GAP–-Groups, algorithms, and programming, Version 4.12.2, 2022. Available from: https://www.gap-system.org. |
[22] | M. K. El-Bably, E. A. Abo-Tabl, A topological reduction for predicting of a lung cancer disease based on generalized rough sets, J. Intell. Fuzzy Syst., 41 (2021), 3045–3060. http://dx.doi.org/10.3233/JIFS-210167 doi: 10.3233/JIFS-210167 |
[23] | M. K. El-Bably, A. A. El-Atik, Soft $\beta$-rough sets and their application to determine COVID-19, Turk. J. Math., 45 (2021). http://dx.doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93 |
[24] | A. S. Nawar, M. A. El-Gayar, M. K. El-Bably, R. A. Hosny, $\theta\beta$-ideal approximation spaces and their applications, AIMS Math., 7 (2022), 2479–2497. http://dx.doi.org/10.3934/math.2022139 doi: 10.3934/math.2022139 |
[25] | M. K. El-Bably, R. Abu-Gdairi, M. A. El-Gayar, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Math., 8 (2023), 9082–9105. http://dx.doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455 |
[26] | M. Akram, A. Farooq, $m$-polar fuzzy Lie ideals of Lie algebras, Quasigroups Relat. Syst., 24 (2016), 101–110. |
[27] | M. Akram, B. Davvaz, F. Feng, Fuzzy soft Lie algebras, J. Mult.-Valued Log. S., 24 (2015), 501–520. |
[28] | M. Akram, Bipolar fuzzy soft Lie algebras, Quasigroups Relat. Syst., 21 (2013), 11–18. |
[29] | M. Akram, A. Farooq, K. P. Shum, On $m$-polar fuzzy Lie subalgebras, Ital. J. Pure Appl. Mat., 36 (2016), 445–454. https://doi.org/10.1523/JNEUROSCI.2323-15.2016 doi: 10.1523/JNEUROSCI.2323-15.2016 |
[30] | M. Akram, N. O. Alshehri, K. P. Shum, A. Farooq, Application of bipolar fuzzy soft sets in $K$-algebras, Ital. J. Pure Appl. Mat., 32 (2014), 1–14. |