In this paper, we characterize when the product of two H-Toeplitz operators to be another H-Toeplitz with one general and another quasihomogeneous symbols. Also, we describe the product of H-Toeplitz operator and Toeplitz operator to be another H-Toeplitz with certain harmonic symbols.
Citation: Qian Ding, Yong Chen. Product of H-Toeplitz operator and Toeplitz operator on the Bergman space[J]. AIMS Mathematics, 2023, 8(9): 20790-20801. doi: 10.3934/math.20231059
In this paper, we characterize when the product of two H-Toeplitz operators to be another H-Toeplitz with one general and another quasihomogeneous symbols. Also, we describe the product of H-Toeplitz operator and Toeplitz operator to be another H-Toeplitz with certain harmonic symbols.
[1] | L. Brown, P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213 (1964), 89–102. https://doi.org/10.1515/crll.1964.213.89 doi: 10.1515/crll.1964.213.89 |
[2] | D. Zheng, Hankel operators and Toeplitz operators on the Bergman space, J. Funct. Anal., 83 (1989), 98–120. https://doi.org/10.1016/0022-1236(89)90032-3 doi: 10.1016/0022-1236(89)90032-3 |
[3] | P. Ahern, Ž. Čučković, A theorem of Brown-Halmos type for Bergman space Toeplitz operators, J. Funct. Anal., 187 (2001), 200–210. https://doi.org/10.1006/jfan.2001.3811 doi: 10.1006/jfan.2001.3811 |
[4] | Ž. Čučković, N. V. Rao, Mellin transform, monomial symbols and commuting Toeplitz operators, J. Funct. Anal., 154 (1998), 195–214. https://doi.org/10.1006/jfan.1997.3204 doi: 10.1006/jfan.1997.3204 |
[5] | I. Louhichi, L. Zakariasy, On Toeplitz operators with quasihomogeneous symbols, Arch. Math., 85 (2005), 248–257. https://doi.org/10.1007/s00013-005-1198-0 doi: 10.1007/s00013-005-1198-0 |
[6] | I. Louhichi, E. Strouse, L. Zakariasy, Products of Toeplitz operators on the Bergman space, Integr. Equ. Oper. Theory, 54 (2006), 525–539. https://doi.org/10.1007/s00020-005-1369-1 doi: 10.1007/s00020-005-1369-1 |
[7] | S. C. Arora, S. Palial, On H-Toeplitz operators, Bull. Pure. Appl. Math., 1 (2007), 141–154. |
[8] | A. Gupta, S. K. Singh, Slant H-Toeplitz operators on the Hardy space, J. Korean Math. Soc., 56 (2019), 703–721. https://doi.org/10.48550/arXiv.1801.04209 doi: 10.48550/arXiv.1801.04209 |
[9] | A. Gupta, S. K. Singh, H-Toeplitz operators on Bergman space, Bull. Korean Math., 58 (2021), 327–347. https://doi.org/10.4134/BKMS.B200260 doi: 10.4134/BKMS.B200260 |
[10] | J. Liang, L. Lai, Y. Zhao, Y. Chen, Commuting H-Toeplitz operators with quasihomogeneous symbol, AIMS Math., 7 (2022), 13927–13944. https://doi.org/10.3934/math.2022442 doi: 10.3934/math.2022442 |