In the paper, some weighted maximal inequalities for the Toeplitz operator related to the singular integral transform with variable CalderȮn-Zygmund kernel are proved. As an application, the boundedness of the operator on weighted Lebesgue space are obtained.
Citation: Dazhao Chen. Weighted boundedness for Toeplitz type operator related to singular integral transform with variable Calderón-Zygmund kernel[J]. AIMS Mathematics, 2021, 6(1): 688-697. doi: 10.3934/math.2021041
[1] | Bo Xu . Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674 |
[2] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[3] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[4] | Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171 |
[5] | Yanqi Yang, Qi Wu . Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310 |
[6] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[7] | Fan Chen, Houwei Du, Jinglan Jia, Ping Li, Zhu Wen . The boundedness on BMOLα space of variation operators for semigroups related to the Laguerre operator. AIMS Mathematics, 2024, 9(8): 22486-22499. doi: 10.3934/math.20241093 |
[8] | Badriya Al-Azri, Ahmad Al-Salman . Weighted Lp norms of Marcinkiewicz functions on product domains along surfaces. AIMS Mathematics, 2024, 9(4): 8386-8405. doi: 10.3934/math.2024408 |
[9] | Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060 |
[10] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
In the paper, some weighted maximal inequalities for the Toeplitz operator related to the singular integral transform with variable CalderȮn-Zygmund kernel are proved. As an application, the boundedness of the operator on weighted Lebesgue space are obtained.
Suppose b is a locally integrable function on Rn and T is an integral operator. The principle model of commutator generated by b and T is Calderón commutator [T,Mb](f)=T(bf)−bT(f)(see [5]). The boundedness of commutator characterizes some function spaces (see [2,10,21]). In the mid seventies, Coifman, Rochberg and Weiss showed that the commutator is bounded on Lebesgue space. In fact they even proved that this property characterizes BMO functions. As the development of singular integrals (see [7,21]), the commutator has been well studied. In [5,19,20], the authors proved that the commutators of BMO functions and the singular integral are bounded on Lebesgue space. In [3], the author proved a similar result where singular integral is replaced by fractional integral. In [10,18], the boundedness of the commutator of the Lipschitz function and singular integral on Triebel-Lizorkin and Lebesgue spaces are gained. In [1,9], the boundedness for the commutator by the weighted BMO and Lipschitz functions and singular integral on Lebesgue spaces are gained (also see [8]). In [2], the authors introduced certain singular integral operator with variable kernel and obtained its boundedness. In [13,14,15], the boundedness for the commutator by the BMO function and operator is obtained. In [17], the authors proved the boundedness of the multilinear oscillatory singular integral by BMO function and the operator. In [11,12,16], certain Toeplitz operator related to the strongly singular integral is studied.
Motivated by these, in the paper, certain Toeplitz operator of the weighted BMO and Lipschitz functions with the singular integral transform with variable Calderón-Zygmund kernel are studied.
In the paper, we will study following singular integral transforms (see [2])
Definition. Let K(x,⋅) be a variable Calderón-Zygmund kernel for a.e. x∈Rn as [2] and for a locally integrable function b on Rn and the singular integral transform T with variable Calderón-Zygmund kernel as
T(f)(x)=∫RnΩ(x,x−y)f(y)dy. |
The Toeplitz operator relater to T is defined as
Tb=m∑k=1Tk,1MbTk,2, |
where Tk,1 are the ±I(the identity operator) or singular integral transform with variable Calderón-Zygmund kernel, and Tk,2 are the linear operators for k=1,...,m, Mb(f)=bf.
Now, we introduce some notations. In the paper, Q will denote a cube of Rn. For a weight function ω (i.e. ω is a nonnegative locally integrable function), let ω(Q)=∫Qω(x)dx and ωQ=|Q|−1∫Qω(x)dx.
For a locally integrable function b, the maximal sharp function of b is defined by
M#(b)(x)=supQ∋x1|Q|∫Q|b(y)−bQ|dy. |
We know that (see [7])
M#(b)(x)≈supQ∋xinfc∈C1|Q|∫Q|b(y)−c|dy. |
Let
M(b)(x)=supQ∋x1|Q|∫Q|b(y)|dy. |
For η>0, let M#η(b)(x)=M#(|b|η)1/η(x) and Mη(b)(x)=M(|b|η)1/η(x).
For 0<η<n, 1≤p<∞ and weight function v, set
Mη,p,v(b)(x)=supQ∋x(1v(Q)1−pη/n∫Q|b(y)|pv(y)dy)1/p |
and
Mv(b)(x)=supQ∋x1v(Q)∫Q|b(y)|v(y)dy. |
The Ap weight is defined by (see [7])
Ap={0<v∈L1loc(Rn):supQ(1|Q|∫Qv(x)dx)(1|Q|∫Qv(x)−1/(p−1)dx)p−1<∞}, 1<p<∞, |
and
A1={0<v∈Lploc(Rn):M(v)(x)≤Cv(x),a.e.}. |
Given a weight function v, the weighted Lebesgue space Lp(Rn,v) is the space of functions b such that, for 1≤p<∞,
||b||Lp(v)=(∫Rn|b(x)|pv(x)dx)1/p<∞. |
The weighted BMO space BMO(v) is the space of functions f such that
||f||BMO(v)=supQ1v(Q)∫Q|f(y)−fQ|dy<∞. |
For 0<β<1, the weighted Lipschitz space Lipβ(v) is the space of functions f such that
||f||Lipβ(v)=supQ1v(Q)β/n(1v(Q)∫Q|f(y)−fQ|pv(x)1−pdy)1/p<∞. |
Remark. (1). We know that (see [6]), for f∈Lipβ(v), v∈A1 and x∈Q,
|fQ−f2kQ|≤Ck||f||Lipβ(v)v(x)v(2kQ)β/n. |
(2). Given f∈Lipβ(v) and v∈A1. By [5], It is known that spaces Lipβ(v) coincide and the norms ||f||Lipβ(v) are equivalent for different values 1≤p<∞.
The following preliminary lemma needs.
Lemma 1.([7, p.485]) Suppose 0<p<q<∞ and any positive function f. It is defined that, for 1/r=1/p−1/q,
||f||WLq=supλ>0λ|{x∈Rn:f(x)>λ}|1/q,Np,q(f)=supQ||fχQ||Lp/||χQ||Lr, |
where the sup is taken for all measurable sets Q with 0<|Q|<∞. Then
||f||WLq≤Np,q(f)≤(q/(q−p))1/p||f||WLq. |
Lemma 2.(see [2]) Suppose T is the singular integral transform as Definition 2. Then T is bounded on Lp(Rn,v) for v∈Ap with 1<p<∞, and weak (L1,L1) bounded.
Lemma 3.(see [1]) Suppose b∈BMO(v). Then
|bQ−b2jQ|≤Cj||b||BMO(v)vQj, |
where vQj=max1≤i≤j|2iQ|−1∫2iQv(x)dx.
Lemma 4.(see [1]) Suppose v∈Ap, 1<p<∞. Then there exists ε>0 such that v−r/p∈Ar for any p′≤r≤p′+ε.
Lemma 5.(see [1]) Suppose v∈BMO(v), v=(μν−1)1/p, μ,ν∈Ap and p>1. Then there exists ε>0 such that for p′≤r≤p′+ε,
∫Q|f(x)−fQ|rμ(x)−r/pdx≤C||f||rBMO(v)∫Qν(x)−r/pdx. |
Lemma 6.(see [1]) Suppose v∈Ap, 1<p<∞. Then there exists 0<δ<1 such that v1−r′/p∈Ap/r′(dμ) for any p′<r<p′(1+δ), where dμ=vr′/pdx.
Lemma 7.(see [1]) Suppose μ,ν∈Ap, v=(μν−1)1/p, 1<p<∞. Then there exists 1<q<p such that
ωQ(νQ)1/q(1|Q|∫Qv(x)−q′ν(x)−q′/qdx)1/q′≤C. |
Lemma 8.(see [5,6]) Suppose 0≤η<n, 1≤s<p<n/η, 1/q=1/p−η/n and v∈A1. Then
||Mη,s,v(f)||Lq(v)≤C||f||Lp(v). |
Lemma 9.(see [7]). Suppose 0<p,η<∞ and v∈∪1≤r<∞Ar. Then, for any smooth function f,
∫RnMη(f)(x)pv(x)dx≤C∫RnM#η(f)(x)pv(x)dx. |
We can prove the following theorems.
Theorem 1. Suppose T is the singular integral transform as Definition 2, 1<p<∞, μ,ν∈Ap, v=(μν−1)1/p, 0<η<1 and b∈BMO(v). If T1(g)=0 for any g∈Lu(Rn)(1<u<∞), then there exists a constant C>0, ε>0, 0<δ<1, 1<q<p and p′<r<min(p′+ε,p′(1+δ)) such that, for any f∈C∞0(Rn) and ˜x∈Rn,
M#η(Tb(f))(˜x)≤C||b||BMO(v)m∑k=1([Mνr′/p(|vTk,2(f)|r′)(˜x)]1/r′+[Mν(|vTk,2(f)|q)(˜x)]1/q). |
Theorem 2. Suppose T is the singular integral transform as Definition 2, v∈A1, 0<η<1, 1<s<∞, 0<β<1 and b∈Lipβ(v). If T1(g)=0 for any g∈Lu(Rn)(1<u<∞), then there exists a constant C>0 such that, for any f∈C∞0(Rn) and ˜x∈Rn,
M#η(Tb(f))(˜x)≤C||b||Lipβ(v)v(˜x)m∑k=1Mβ,s,v(Tk,2(f))(˜x). |
Theorem 3. Suppose T is the singular integral transform as Definition 2, 1<p<∞, μ,ν∈Ap, v=(μν−1)1/p and b∈BMO(v). If T1(g)=0 for any g∈Lu(Rn)(1<u<∞) and Tk,2 are the bounded operators on Lp(Rn,v) for 1<p<∞ and v∈Ap(1≤k≤m), then Tb is bounded from Lp(Rn,μ) to Lp(Rn,ν).
Theorem 4. Suppose T is the singular integral transform as Definition 2, v∈A1, 0<β<1, b∈Lipβ(v), 1<p<n/β and 1/q=1/p−β/n. If T1(g)=0 for any g∈Lu(Rn)(1<u<∞) and Tk,2 are the bounded linear operators on Lp(Rn,v) for 1<p<∞ and v∈A1(1≤k≤m), then Tb is bounded from Lp(Rn,v) to Lq(Rn,v1−q).
Proof of Theorem 1. It is only to prove the following inequality holds, for f∈C∞0(Rn) and some constant C0:
(1|Q|∫Q|Tb(f)(x)−C0|ηdx)1/η≤C||b||BMO(v)m∑k=1([Mνr′/p(|vTk,2(f)|r′)(˜x)]1/r′+[Mν(|vTk,2(f)|q)(˜x)]1/q). |
We assume Tk,1 are T(k=1,...,m). Fix a cube Q=Q(x0,d) and ˜x∈Q. We write, by T1(g)=0,
Tb(f)(x)=Tb−b2Q(f)(x)=T(b−b2Q)χ2Q(f)(x)+T(b−b2Q)χ(2Q)c(f)(x)=f1(x)+f2(x). |
Then
(1|Q|∫Q|Tb(f)(x)−f2(x0)|ηdx)1/η≤C(1|Q|∫Q|f1(x)|ηdx)1/η+C(1|Q|∫Q|f2(x)−f2(x0)|ηdx)1/η=I1+I2. |
For I1, we know ν−r/p∈Ar by Lemma 4, we get
(1|Q|∫Qν(x)−r/pdx)1/r≤C(1|Q|∫Qν(x)r′/pdx)−1/r′, |
then, by Lemmas 1, 2 and 5, we obtain
(1|Q|∫Q|Tk,1M(b−bQ)χ2QTk,2(f)(x)|ηdx)1/η=|Q|1/η−1|Q|1/η||Tk,1M(b−bQ)χ2QTk,2(f)χQ||Lη||χQ||Lη/(1−η)≤C|Q|||Tk,1M(b−b2Q)χ2QTk,2(f)||WL1≤C|Q|∫Rn|M(b−b2Q)χ2QTk,2(f)(x)|dx=C|Q|∫2Q|b(x)−b2Q|μ(x)−1/p|Tk,2(f)(x)|v(x)ν(x)1/pdx≤C(1|Q|∫2Q|b(x)−b2Q|rμ(x)−r/pdx)1/r(1|Q|∫2Q|Tk,2(f)(x)|r′v(x)r′ν(x)r′/pdx)1/r′≤C||b||BMO(v)(1|2Q|∫2Qν(x)−r/pdx)1/r(1|Q|∫2Q|Tk,2(f)(x)v(x)|r′ν(x)r′/pdx)1/r′≤C||b||BMO(v)(1|2Q|∫2Qν(x)r′/pdx)−1/r′(1|Q|∫2Q|Tk,2(f)(x)v(x)|r′ν(x)r′/pdx)1/r′≤C||b||BMO(v)(1ν(2Q)r′/p∫2Q|Tk,2(f)(x)v(x)|r′ν(x)r′/pdx)1/r′≤C||b||BMO(v)[Mνr′/p(|vTk,2(f)|r′)(˜x)]1/r′, |
thus
I1≤Cm∑k=1(1|Q|∫Q|Tk,1M(b−bQ)χ2QTk,2(f)(x)|ηdx)1/η≤C||b||BMO(v)m∑k=1[Mνr′/p(|vTk,2(f)|r′)(˜x)]1/r′. |
For I2, by [2], we know that
T(f)(x)=∞∑k=1gk∑l=1akl(x)∫RnYkl(x−y)|x−y|nf(y)dy, |
and for |x−y|>2|x0−x|>0,
|Ykl(x−y)|x−y|n−Ykl(x0−y)|x0−y|n|≤Ckn/2|x−x0|/|x0−y|n+1 |
Thus, by the same argument of proof in [4], for x∈Q, we get
|Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x)−Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x0)|≤C||b||BMO(v)∞∑j=12−j(1ν(2j+1Q)r′/p∫2j+1Q|Tk,2(f)(y)v(y)|r′ν(y)r′/pdy)1/r′+C||b||BMO(v)[Mν(|vTk,2(f)|q)(˜x)]1/q∞∑j=1j2−j×v2jQ(ν2jQ)1/q(1|2j+1Q|∫2j+1Qv(y)−q′ν(y)−q′/qdy)1/q′≤C||b||BMO(v)[Mνr′/p(|vTk,2(f)|r′)(˜x)]1/r′+C||b||BMO(v)[Mν(|vTk,2(f)|q)(˜x)]1/q. |
Thus
I2≤1|Q|∫Qm∑k=1|Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x)−Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x0)|dx≤C||b||BMO(v)m∑k=1([Mνr′/p(|vTk,2(f)|r′)(˜x)]1/r′+[Mν(|vTk,2(f)|q)(˜x)]1/q). |
Theorem 1 is proved.
Proof of Theorem 2. It only to prove the following inequality holds, for f∈C∞0(Rn) and some constant C0:
(1|Q|∫Q|Tb(f)(x)−C0|ηdx)1/η≤C||b||Lipβ(v)ω(˜x)m∑k=1Mβ,s,ω(Tk,2(f))(˜x). |
We assume Tk,1 are T(k=1,...,m) and similar to Theorem 1, for a cube Q=Q(x0,d) and ˜x∈Q, we get
(1|Q|∫Q|Tb(f)(x)−f2(x0)|ηdx)1/η≤C(1|Q|∫Q|f1(x)|ηdx)1/η+C(1|Q|∫Q|f2(x)−f2(x0)|ηdx)1/η=I3+I4. |
For I3, we have
I3≤C|Q|∫2Q|b(x)−b2Q|v(x)−1/s|Tk,2(f)(x)|v(x)1/sdx≤C|Q|(∫2Q|b(x)−b2Q|s′v(x)1−s′dx)1/s′(∫2Q|Tk,2(f)(x)|sv(x)dx)1/s≤C|Q|||b||Lipβ(v)v(2Q)1/s′+β/nv(2Q)1/s−β/nMβ,s,v(Tk,2(f))(˜x)≤C||b||Lipβ(v)v(2Q)|2Q|Mβ,s,v(Tk,2(f))(˜x)≤C||b||Lipβ(v)v(˜x)Mβ,s,v(Tk,2(f))(˜x), |
thus
I3≤Cm∑k=1(1|Q|∫Q|Tk,1M(b−bQ)χ2QTk,2(f)(x)|ηdx)1/η≤C||b||Lipβ(v)v(˜x)m∑k=1Mβ,s,v(Tk,2(f))(˜x). |
For I4, by using the same argument as in the proof of I2, we have, for x∈Q,
|Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x)−Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x0)|≤C∞∑u=1u−n/2−2∞∑j=1∫2jd≤|y−x0|<2j+1d|b(y)−b2Q||x−x0||x0−y|n+1|Tk,2(f)(y)|dy≤C∞∑j=1d(2j+1d)n+1∫2j+1Q|b(y)−b2j+1Q+b2j+1Q−b2Q|v(y)−1/s|Tk,2(f)(y)|v(y)1/sdy≤C∞∑j=1d(2j+1d)n+1(∫2j+1Q|b(y)−b2j+1Q|s′v(y)1−s′dy)1/s′(∫2j+1Q|Tk,2(f)(y)|sv(y)dy)1/s+∞∑j=1d(2j+1d)n+1|b2j+1Q−b2Q|(∫2j+1Qv(y)−1/(s−1)dy)1/s′(∫2j+1Q|Tk,2(f)(y)|sv(y)dy)1/s≤C∞∑j=1d(2j+1d)n+1||b||Lipβ(v)v(2j+1Q)1/s′+β/nv(2j+1Q)1/s−β/nMβ,s,v(Tk,2(f))(˜x)+∞∑j=1d(2j+1d)n+1||b||Lipβ(v)v(˜x)jv(2j+1Q)β/nv(2j+1Q)1/s−β/nMβ,s,v(Tk,2(f))(˜x)×|2j+1Q|v(2j+1Q)1/s(1|2j+1Q|∫2j+1Qv(y)dy)1/s(1|2j+1Q|∫2j+1Qv(y)−1/(s−1)dy)(s−1)/s≤C||b||Lipβ(v)v(˜x)Mβ,s,v(Tk,2(f))(˜x)∞∑j=1j2−j≤C||b||Lipβ(v)v(˜x)Mβ,s,v(Tk,2(f))(˜x), |
thus
I4≤1|Q|∫Qm∑k=1|Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x)−Tk,1M(b−bQ)χ(2Q)cTk,2(f)(x0)|dx≤C||b||Lipβ(v)v(˜x)m∑k=1Mβ,s,v(Tk,2(f))(˜x). |
Theorem 2 is proved.
Proof of Theorem 3. It is noticed νr′/p∈Ar′+1−r′/p⊂Ap and ν(x)dx∈Ap/r′(ν(x)r′/pdx), we have, by Theorem 1 and Lemma 9,
∫Rn|Tb(f)(x)|pν(x)dx≤∫Rn|Mη(Tb(f))(x)|pν(x)dx≤C∫Rn|M#η(Tb(f))(x)|pν(x)dx≤C||b||BMO(v)m∑k=1∫Rn([Mνr′/p(|vTk,2(f)|r′)(x)]p/r′+[Mν(|vTk,2(f)|q)(x)]p/q)ν(x)dx≤C||b||BMO(v)m∑k=1∫Rn|v(x)Tk,2(f)(x)|pν(x)dx=C||b||BMO(v)m∑k=1∫Rn|Tk,2(f)(x)|pμ(x)dx≤C||b||BMO(v)∫Rn|f(x)|pμ(x)dx. |
Theorem 3 is proved.
Proof of Theorem 4. In Theorem 2 we choose 1<s<p and by v1−q∈A∞, we get, by Lemmas 8 and 9,
||Tb(f)||Lq(v1−q)≤‖Mη(Tb(f))‖Lq(v1−q)≤C‖M#η(Tb(f))‖Lq(v1−q)≤C||b||Lipβ(v)m∑k=1‖vMβ,s,v(Tk,2(f))‖Lq(v1−q)=C||b||Lipβ(v)m∑k=1‖Mβ,s,v(Tk,2(f))‖Lq(v)≤C||b||Lipβ(v)m∑k=1‖Tk,2(f)‖Lp(v)≤C||b||Lipβ(v)‖f‖Lp(v). |
Theorem 4 is proved.
Some new weighted maximal inequalities for the Toeplitz operator related to the singular integral transform with variable Calderón-Zygmund kernel are proved. As an application, the boundedness of the operator on weighted Lebesgue space are obtained.
The author are very grateful to the anonymous referees for their constructive suggestions. This research was supported by the Scientific Research Funds of Hunan Provincial Education Department (No :19B509).
The author declare that he has no conflict of interest.
[1] |
S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc., 292 (1985), 103- 122. doi: 10.1090/S0002-9947-1985-0805955-5
![]() |
[2] |
A. P. Calderón, A. Zygmund, On singular integrals with variable kernels, Appl. Anal., 7 (1978), 221-238. doi: 10.1080/00036817808839193
![]() |
[3] |
S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16. doi: 10.1512/iumj.1982.31.31002
![]() |
[4] | D. Chen, Weighted boundedness for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel, Hacettepe J. Math. Stat., 483 (2019), 657-668. |
[5] |
R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. doi: 10.2307/1970954
![]() |
[6] | J. Garcia-Cuerva, Weighted Hp spaces, Dissert. Math., 162 (1979), 1-65. |
[7] | J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, NorthHolland Math., Amsterdam: Academic Press, 1985. |
[8] | Y. X. He, Y. S. Wang, Commutators of Marcinkiewicz integrals and weighted BMO, Acta Math. Sin. (Chin. Ser.), 54 (2011), 513-520. |
[9] |
B. Hu, J. Gu, Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces, J. Math. Anal. Appl., 340 (2008), 598-605. doi: 10.1016/j.jmaa.2007.08.034
![]() |
[10] |
S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math., 16 (1978), 263-270. doi: 10.1007/BF02386000
![]() |
[11] |
S. Krantz, S. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, J. Math. Anal. Appl., 258 (2001), 629-641. doi: 10.1006/jmaa.2000.7402
![]() |
[12] |
Y. Lin, S. Z. Lu, Toeplitz operators related to strongly singular Calderon-Zygmund operators, Science in China (Series A), 49 (2006), 1048-1064. doi: 10.1007/s11425-006-1084-7
![]() |
[13] | L. Z. Liu, The continuity for multilinear singular integral operators with variable Calderón-Zygmund kernel on Hardy and Herz spaces, Sib. Electron. Math. Rep., 2 (2005), 156-166. |
[14] | L. Z. Liu, Good λ estimate for multilinear singular integral operators with variable Calderón-Zygmund kernel, Kragujevac J. Math., 27 (2005), 19-30. |
[15] | L. Z. Liu, Weighted estimates of multilinear singular integral operators with variable Calderón-Zygmund kernel for the extreme cases, Vietnam J. Math., 34 (2006), 51-61. |
[16] |
S. Z. Lu, H. X. Mo, Toeplitz type operators on Lebesgue spaces, Acta Math. Sci., 29 (2009), 140- 150. doi: 10.1016/S0252-9602(09)60014-X
![]() |
[17] | S. Z. Lu, D. C. Yang, Z. S. Zhou, Oscillatory singular integral operators with Calderón-Zygmund kernels, Southeast Asian Bull. Math., 23 (1999), 457-470. |
[18] | M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1-18. |
[19] |
C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal., 128 (1995), 163-185. doi: 10.1006/jfan.1995.1027
![]() |
[20] |
C. Pérez, R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65 (2002), 672-692. doi: 10.1112/S0024610702003174
![]() |
[21] | E. M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, New York: Princeton Univ. Press, Princeton NJ, 1993. |
1. | Dazhao Chen, Hui Huang, Sharp function estimates and boundedness for Toeplitz-type operators associated with general fractional integral operators, 2021, 19, 2391-5455, 1554, 10.1515/math-2021-0122 | |
2. | Xiuyun Xia, Huatao Chen, Hao Tian, Ye Wang, Yadan Shi, Sharp and Weighted Boundedness for Multilinear Integral Operators, 2024, 86, 1338-9750, 185, 10.2478/tmmp-2024-0017 |