Research article Special Issues

Bilinear $ \theta $-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces

  • Received: 13 November 2021 Revised: 12 April 2022 Accepted: 14 April 2022 Published: 22 April 2022
  • MSC : 42B20, 42B25, 42B35

  • In this paper, we discuss the boundedness of bilinear $ \theta $-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces. In addition, the corresponding results of commutators generated by bilinear $ \theta $-type Calderón-Zygmund operators with BMO functions on these spaces is also obtained.

    Citation: Bo Xu. Bilinear $ \theta $-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces[J]. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674

    Related Papers:

  • In this paper, we discuss the boundedness of bilinear $ \theta $-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces. In addition, the corresponding results of commutators generated by bilinear $ \theta $-type Calderón-Zygmund operators with BMO functions on these spaces is also obtained.



    加载中


    [1] L. Peng, Generalized Calderón-Zygmund operators and their weighted norm inequalities, Adv. Math., 14 (1985), 97–115.
    [2] Y. Yang, S. Tao, $\theta$-Type Calderón-Zygmund operators and commutators in variable exponents Herz space, Open Math., 16 (2018), 1607–1620. http://dx.doi.org/10.1515/math-2018-0133 doi: 10.1515/math-2018-0133
    [3] Y. Yang, S. Tao, $\theta$-Type Calderón-Zygmund operators on Morrey and Morrey-Herz-type Hardy spaces with variable exponents, U.P.B. Sci. Bull., Series A, 82 (2020), 35–44.
    [4] V. Guliyev, Calderón-Zygmund operators with kernels of Dini's type on generalized weighted variable exponent Morrey spaces, Positivity, 25 (2021), 1771–1788. http://dx.doi.org/10.1007/s11117-021-00846-1 doi: 10.1007/s11117-021-00846-1
    [5] K. Yabuta, Generalizations of Calderón-Zygmund operators, Studia Math., 82 (1985), 17–31.
    [6] T. Zheng, X. Tao, X. Wu, Bilinear Calderón-Zygmund operators of type $\omega(t)$ on non-homogeneous space, J. Inequal. Appl., 113 (2014), 1–18. http://dx.doi.org/10.1186/1029-242X-2014-113 doi: 10.1186/1029-242X-2014-113
    [7] T. Zheng, Z. Wang, W. Xiao, Maximal bilinear Calderón-Zygmund operators of type $\omega(t)$ on non-homogeneous space, Ann. Funct. Anal., 6 (2015), 134–154. http://dx.doi.org/10.15352/afa/06-4-134 doi: 10.15352/afa/06-4-134
    [8] G. Lu, S. Tao, Bilinear $\theta$-type Calderón-Zygmund operators on Non-homogeneous generalized Morrey spaces, J. Comput. Anal. Appl., 26 (2019), 650–670.
    [9] P. Zhang, J. Sun, Commutators of multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, 2016, arXiv.1605.07449.
    [10] H. Wang, Boundedness of $\theta$-type Calderón-Zygmund operators and commutators in the generalized weighted Morrey spaces, J. Funct. Space., 2016 (2016), 1–18. http://dx.doi.org/10.1155/2016/1309348 doi: 10.1155/2016/1309348
    [11] A. F. Ismayilova, Calderón-Zygmund operators with kernels of Dini's type and their multilinear commutators on generalized Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math., 41 (2021), 1–12.
    [12] R. Xie, L. Shu, On multilinear commutators of $\theta$-type Calderón-Zygmund operators, Anal. Theory Appl., 24 (2008), 260–270. http://dx.doi.org/10.1007/s10496-008-0260-8 doi: 10.1007/s10496-008-0260-8
    [13] O. Kovacik, J. Rakosnik, On spaces $L^{p (x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [14] J. Tan, Z. Liu, J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal., 11 (2017), 715–734. http://dx.doi.org/10.7153/jmi-2017-11-57 doi: 10.7153/jmi-2017-11-57
    [15] D. Cruz-Uribe, A. Fiorenza, J. Martell, C. Perez, The Boundedness of classical operators on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264.
    [16] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, 1 Eds., Basel: Birkhäuser, 2013. http://dx.doi.org/10.1007/978-3-0348-0548-3
    [17] K. Ho, Singular integral operators, John-Nirenberg inequalities and Triebel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina, 57 (2016), 85–101.
    [18] A. Huang, J. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69–77. http://dx.doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
    [19] L. Diening, P. Harjulehto, P. Hästo, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, 1 Eds., Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8
    [20] R. Bandaliyev, V. Guliyev, Embedding theorems between variable-exponent Morrey Spaces, Math. Notes, 106 (2019), 488–500. http://dx.doi.org/10.1134/S0001434619090190 doi: 10.1134/S0001434619090190
    [21] W. Wang, J. Xu, Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces, Front. Math. China, 12 (2017), 1235–1246. http://dx.doi.org/10.1007/s11464-017-0653-0 doi: 10.1007/s11464-017-0653-0
    [22] A. Almeida, J. Hasanov, S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15 (2008), 195–208. http://dx.doi.org/10.1515/GMJ.2008.195 doi: 10.1515/GMJ.2008.195
    [23] I. Ekincioglu, C. Keskin, A. Serbetci, Multilinear commutators of Calderón-Zygmund operator on generalized variable exponent Morrey spaces, Positivity, 25 (2021), 1551–1567. http://dx.doi.org/10.1007/s11117-021-00828-3 doi: 10.1007/s11117-021-00828-3
    [24] P. Long, H, Han, Characterizations of some operators on the vanishing generalized Morrey spaces with variable exponent, J. Math. Anal. Appl., 437 (2016), 419–430. http://dx.doi.org/10.1016/j.jmaa.2016.01.004 doi: 10.1016/j.jmaa.2016.01.004
    [25] V. Guliyev, J. Hasanov, S. Stefan, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107 (2010), 285–304.
    [26] V. S. Guliyev, S. G. Samko, Maximal, potential and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci., 193 (2013), 228–248. http://dx.doi.org/10.1007/s10958-013-1449-8 doi: 10.1007/s10958-013-1449-8
    [27] A. Karapetyants, H. Rafeiro, S. Samko, On singular operators in vanishing generalized variable-exponent Morrey spaces and applications to Bergman-type spaces, Math. Notes, 106 (2019), 727–739. http://dx.doi.org/10.1134/S0001434619110075 doi: 10.1134/S0001434619110075
    [28] C. Aykol, X. Badalov, J. Hasanov, Boundedness of the potential operators and their commutators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets, Ann. Funct. Anal., 11 (2020), 423–438. http://dx.doi.org/10.1007/s43034-019-00012-5 doi: 10.1007/s43034-019-00012-5
    [29] C. Aykol, X. Badalov, J. Hasanov, Maximal and singular operators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets, Quaest. Math., 43 (2020), 1487–1512. http://dx.doi.org/10.2989/16073606.2019.1635539 doi: 10.2989/16073606.2019.1635539
    [30] F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. http://dx.doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
    [31] Z. Liu, S. Lu, Endpoint estimates for commutators of Calderón-Zygmund type operators, Kodai Math. J., 25 (2002), 79–88. http://dx.doi.org/10.2996/kmj/1106171078 doi: 10.2996/kmj/1106171078
    [32] M. Izuki, Boundedness of commutators on Herz spaces with variable exponents, Rend. Circ. Mat. Palermo, 59 (2010), 199–213. http://dx.doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
    [33] M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponents, Hiroshima Math. J., 40 (2010), 343–355. http://dx.doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
    [34] L. Wang, Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent, Bull. Korean Math. Soc., 57 (2020), 1427–1449. https://doi.org/10.4134/BKMS.b191108 doi: 10.4134/BKMS.b191108
    [35] V. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci., 193 (2013), 211–227. http://dx.doi.org/10.1007/s10958-013-1448-9 doi: 10.1007/s10958-013-1448-9
    [36] V. Guliyev, Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J., 3 (2012), 33–61.
    [37] K. Ho, Definability of singular integral operators on Morrey-Banach spaces, J. Math. Soc. Japan, 72 (2020), 155–170. http://dx.doi.org/10.2969/jmsj/81208120 doi: 10.2969/jmsj/81208120
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1760) PDF downloads(107) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog