Let $ S $ be a multiplicative subset of a ring $ R $. A right ideal $ A $ of $ R $ is referred to as $ S $-principal if there exist an element $ s \in S $ and a principal right ideal $ aR $ of $ R $ such that $ As \subseteq aR \subseteq A $. A ring is referred to as an $ S $-principal right ideal ring ($ S $-PRIR) if every right ideal is $ S $-principal. This paper examines $ S $-PRIRs, which extend the notion of principal right ideal rings. Various examples, including several extensions of $ S $-PRIRs are investigated, and some practical results are proven. A noncommutative $ S $-PRIR that is not a principal right ideal ring is found, and the $ S $-variants of the Eakin-Nagata-Eisenbud theorem and Cohen's theorem for $ S $-PRIRs are proven.
Citation: Jongwook Baeck. On $ S $-principal right ideal rings[J]. AIMS Mathematics, 2022, 7(7): 12106-12122. doi: 10.3934/math.2022673
Let $ S $ be a multiplicative subset of a ring $ R $. A right ideal $ A $ of $ R $ is referred to as $ S $-principal if there exist an element $ s \in S $ and a principal right ideal $ aR $ of $ R $ such that $ As \subseteq aR \subseteq A $. A ring is referred to as an $ S $-principal right ideal ring ($ S $-PRIR) if every right ideal is $ S $-principal. This paper examines $ S $-PRIRs, which extend the notion of principal right ideal rings. Various examples, including several extensions of $ S $-PRIRs are investigated, and some practical results are proven. A noncommutative $ S $-PRIR that is not a principal right ideal ring is found, and the $ S $-variants of the Eakin-Nagata-Eisenbud theorem and Cohen's theorem for $ S $-PRIRs are proven.
[1] | S. Ali, A. N. A. Koam, M. A. Ansari, On *-differential identities in prime rings with involution, Hacettepe J. Math. Stat., 49 (2020), 708–715. https://doi.org/10.15672/hujms.588726 doi: 10.15672/hujms.588726 |
[2] | D. D. Anderson, T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30 (2002), 4407–4416. https://doi.org/10.1081/AGB-120013328 doi: 10.1081/AGB-120013328 |
[3] | D. D. Anderson, A. Hamed, M. Zafrullah, On $S$-GCD domains, J. Alg. App., 18 (2019), 1950067. https://doi.org/10.1142/S0219498819500671 doi: 10.1142/S0219498819500671 |
[4] | J. Baeck, G. Lee, J. W. Lim, $S$-Noetherian rings and their extensions, Taiwanese J. Math., 20 (2016), 1231–1250. https://doi.org/10.11650/tjm.20.2016.7436 doi: 10.11650/tjm.20.2016.7436 |
[5] | G. M. Bergman, The diamond lemma for ring theory, Adv. Math., 29 (1978), 178–218. https://doi.org/10.1016/0001-8708(78)90010-5 doi: 10.1016/0001-8708(78)90010-5 |
[6] | Z. Bilgin, M. L. Reyes, Ü. Tekir, On right $S$-Noetherian rings and S-Noetherian modules, Comm. Algebra, 46 (2018), 863–869. https://doi.org/10.1080/00927872.2017.1332199 doi: 10.1080/00927872.2017.1332199 |
[7] | G. A. Cannon, K. M. Neuerburg, Ideals in Dorroh extensions of rings, Missouri J. Math. Sci., 20 (2008), 165–168. https://doi.org/10.35834/mjms/1316032775 doi: 10.35834/mjms/1316032775 |
[8] | A. Faisol, B. Surodjo, S. Wahyuni, $T[[S]]$-Noetherian Property On Generalized Power Series Modules, JP J. Algebr. Number Theory Appl., 43 (2019), 1–12. https://doi.org/10.17654/NT043010001 doi: 10.17654/NT043010001 |
[9] | K. R. Goodearl, R. B. Warfield, An Introduction to Noncommutative Noetherian Rings, 2 Eds., London: Cambridge Univ. Press, 2004. https://doi.org/10.1017/CBO9780511841699 |
[10] | A. Hamed, S. Hizem, $S$-Noetherian rings of the forms $\mathcal{A}[X]$ and $\mathcal{A}[[X]]$, Comm. Algebra., 43 (2015), 3848–3856. https://doi.org/10.1080/00927872.2014.924127 doi: 10.1080/00927872.2014.924127 |
[11] | A. Hamed, H. Kim, On integral domains in which every ascending chain on principal ideals is $S$-stationary, Bull. Korean Math. Soc., 57 (2020), 1215–1229. https://doi.org/10.4134/BKMS.b190903 doi: 10.4134/BKMS.b190903 |
[12] | T. W. Hungerford, Algebra, New York: Springer, 1974. https://doi.org/10.1007/978-1-4612-6101-8 |
[13] | H. Kim, M. O. Kim, J. W. Lim, On $S$-strong Mori domains, J. Algebra, 416 (2014), 314–332. https://doi.org/10.1016/j.jalgebra.2014.06.015 doi: 10.1016/j.jalgebra.2014.06.015 |
[14] | A. N. A. Koam, A. Haider, M. A. Ansari, Ordered quasi(bi)-$\Gamma$-ideals in ordered $\Gamma$-semirings, Journal of Mathematics, 2019 (2019), 9213536. https://doi.org/10.1155/2019/9213536 doi: 10.1155/2019/9213536 |
[15] | K. Koh, On prime one-sided ideals, Can. Math. Bull., 14 (1971), 259–260. https://doi.org/10.4153/CMB-1971-047-3 doi: 10.4153/CMB-1971-047-3 |
[16] | M. J. Kwon, J. W. Lim, On nonnil-$S$-Noetherian rings, Mathematics, 8 (2020), 1428. https://doi.org/10.3390/math8091428 doi: 10.3390/math8091428 |
[17] | T. Y. Lam, Lectures on Modules and Rings, New York: Springer, 1999. https://doi.org/10.1007/978-1-4612-0525-8 |
[18] | T. Y. Lam, A First Course in Noncommutative Rings, 2 Eds., New York: Springer: 2001. https://doi.org/10.1007/978-1-4419-8616-0 |
[19] | G. Lee, J. Baeck, J. W. Lim, Eakin-Nagata-Eisenbud theorem for right $S$-Noetherian rings, Taiwanese J. Math., 2021(May), submitted for publication. |
[20] | T. K. Lee, Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra, 32 (2004), 2287–2299. https://doi.org/10.1081/AGB-120037221 doi: 10.1081/AGB-120037221 |
[21] | J. W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55 (2015), 507–514. https://doi.org/10.5666/KMJ.2015.55.3.507 doi: 10.5666/KMJ.2015.55.3.507 |
[22] | J. W. Lim, D. Y. Oh, $S$-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra, 218 (2014), 1075–1080. https://doi.org/10.1016/j.jpaa.2013.11.003 doi: 10.1016/j.jpaa.2013.11.003 |
[23] | J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings, Revised ed., Providence: Amer. Math. Soc., 2001. https://doi.org/10.1090/gsm/030 |
[24] | W. Narkiewicz, Polynomial mappings, Berlin: Springer, 1995. https://doi.org/10.1007/BFb0076894 |
[25] | M. L. Reyes, Noncommutative generalizations of theorems of Cohen and Kaplansky, Algebra Represent. Theory, 15 (2012), 933–979. https://doi.org/10.1007/s10468-011-9273-7 doi: 10.1007/s10468-011-9273-7 |
[26] | L. H. Rowen, Ring Theory Vol. I, Boston: Academic Press, 1988. |