Citation: Pınar Zengin Alp, Emrah Evren Kara. The new class $L_{z,p,E}$ of $s-$ type operators[J]. AIMS Mathematics, 2019, 4(3): 779-791. doi: 10.3934/math.2019.3.779
[1] | A. Maji, P. D. Srivastava, On operator ideals using weightedCesàro sequence space, Journal of the Egyptian Mathematical Society, 22 (2014), 446-452. doi: 10.1016/j.joems.2013.10.005 |
[2] | A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucléaires, American Mathematical Soc., 16 (1955). |
[3] | E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen, Mathematische Annalen, 63 (1907), 433-476. doi: 10.1007/BF01449770 |
[4] | A. Pietsch, Einigie neu Klassen von Kompakten linearenAbbildungen, Revue Roum. Math. Pures et Appl., 8 (1963), 427-447. |
[5] | A. Pietsch, s-Numbers of operators in Banach spaces, StudiaMath., 51 (1974), 201-223. |
[6] | A. Pietsch, Operator Ideals, VEB Deutscher Verlag derWissenschaften, Berlin, 1978. |
[7] | B.Carl, A.Hinrichs, On s-numbers and Weyl inequalities ofoperators in Banach spaces, Bull.Lond. Math. Soc., 41 (2009), 332-340. doi: 10.1112/blms/bdp007 |
[8] | A. Pietsch, Eigenvalues and s-numbers, CambridgeUniversity Press, New York, 1986. |
[9] | E. Malkowsky and E. Savaş, Matrix transformations betweensequence spaces of generalized weighted means, Appl. Math. Comput., 147 (2004), 333-345. |
[10] | J. S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math., 1 (1970), 19-25. |
[11] | S. Saejung, Another look at Cesàro sequence spaces, J. Math. Anal. Appl., 366 (2010), 530-537. doi: 10.1016/j.jmaa.2010.01.029 |
[12] | G. Constantin, Operators of $ces-p$ type, Rend. Acc. Naz. Lincei., 52 (1972), 875-878. |
[13] | M. Kirişci, The Hahn sequence space defined by the Cesaro mean, Abstr. Appl. Anal., {\bf 2013 (2013), 1-6. |
[14] | N. Tita, On Stolz mappings, Math. Japonica, 26 (1981), 495-496. |
[15] | E. E. Kara, M. İlkhan, On a new class of s-typeoperators, Konuralp Journal of Mathematics, 3 (2015), 1-11. |
[16] | A. Maji, P. D. Srivastava, Some class of operator ideals, Int.J. Pure Appl. Math., 83 (2013), 731-740. |
[17] | S. E. S. Demiriz, The norm of certain matrix operators on the new block sequence space, Conference Proceedings of Science and Technology, 1 (2018), 7-10. |
[18] | A. Maji, P. D. Srivastava, Some results of operator idealson $s-$type $\left \vert A,p\right \vert $ operators, Tamkang J. Math., 45 (2014), 119-136. doi: 10.5556/j.tkjm.45.2014.1297 |
[19] | N. şimşek,V. Karakaya, H. Polat, Operators idealsof generalized modular spaces of Cesaro type defined by weighted means, J. Comput. Anal. Appl., 19 (2015), 804-811. |
[20] | E. Erdoǧan, V. Karakaya, Operator ideal of s-type operators using weighted mean sequence space, Carpathian J. Math., 33 (2017), 311-318. |
[21] | D. Foroutannia, On the block sequence space $l_p(E)$ andrelated matrix transformations, Turk. J. Math., 39 (2015), 830-841. doi: 10.3906/mat-1501-16 |
[22] | H. Roopaei, D. Foroutannia, The norm of certain matrix operatorson new difference sequence spaces, Jordan J. Math. Stat., 8 (2015), 223-237. |
[23] | H. Roopaei, D. Foroutannia, A new sequence space and norm ofcertain matrix operators on this space, Sahand Communications inMathematical Analysis, 3 (2016), 1-12. |
[24] | P. Z. Alp, E. E. Kara, A new class of operator ideals on the block sequence space $l_p(E)$, Adv. Appl. Math. Sci., 18 (2018), 205-217. |
[25] | P. Z. Alp, E. E. Kara, Some equivalent quasinorms on $L_{\phi,E}$, Facta Univ. Ser. Math. Inform., 33 (2018), 739-749. |