Research article

M-polynomial and topological indices of some transformed networks

  • Received: 07 July 2021 Accepted: 14 September 2021 Published: 27 September 2021
  • MSC : 05C92

  • In the chemical industry, topological indices play an important role in defining the properties of chemical compounds. They are numerical parameters and structure invariant. It is a proven fact by scientists that topological properties are influential tools for interconnection networks. In this paper, we will use stellation, medial and bounded dual operations to build transformed networks from zigzag and triangular benzenoid structures. Using M-polynomial, we compute the first and second Zagreb indices, second modified Zagreb indices, symmetric division index, general Randic index, reciprocal general Randic index. We also calculate atomic bond connectivity index, geometric arithmetic index, harmonic index, first and second Gourava indices, first and second hyper Gourava indices.

    Citation: Fei Yu, Hifza Iqbal, Saira Munir, Jia Bao Liu. M-polynomial and topological indices of some transformed networks[J]. AIMS Mathematics, 2021, 6(12): 13887-13906. doi: 10.3934/math.2021804

    Related Papers:

  • In the chemical industry, topological indices play an important role in defining the properties of chemical compounds. They are numerical parameters and structure invariant. It is a proven fact by scientists that topological properties are influential tools for interconnection networks. In this paper, we will use stellation, medial and bounded dual operations to build transformed networks from zigzag and triangular benzenoid structures. Using M-polynomial, we compute the first and second Zagreb indices, second modified Zagreb indices, symmetric division index, general Randic index, reciprocal general Randic index. We also calculate atomic bond connectivity index, geometric arithmetic index, harmonic index, first and second Gourava indices, first and second hyper Gourava indices.



    加载中


    [1] F. Afzal, S. H. Butt, D. Afzal, S. Hameed, M-polynomial and topological indices of zigzag edge coronoid fused by starphene, Open Chem., 18 (2020), 1362–1369. doi: 10.1515/chem-2020-0161
    [2] D. Archdeacon, The medial graph and voltage-current duality, Discrete Math., 104 (1992), 111–141. doi: 10.1016/0012-365X(92)90328-D
    [3] A. Ali, W. Nazeer, M. Munir, S. M. Kang, M-polynomial and topological indices of zigzag and rhombic benzenoid system, Open Chem., 16 (2018), 73–78. doi: 10.1515/chem-2018-0010
    [4] A. Azhar, H. Iqbal, K. Ali, S. T. R. Rizvi, A note on valency dependence invariants of L(G(K)) graph, Ars Combinatoria, 2019.
    [5] J. B. Babujee, S. Ramakrishnan, Topological indices and new graph structures, Appl. Math. Sci., 6 (2012), 5383–5401.
    [6] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index modelling the enthalpy of formation of alkanes, Indian J. Chem., 37 (1998), 849–855.
    [7] M. R. Farahani, A new version of zagreb index of circumcoronene series of benzenoid, Chem. Phys. Res. J., 6 (2013), 27–33.
    [8] S. Hayat, M. Imran, On some degree based topological indices of certain nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 1–7. doi: 10.1166/jctn.2015.3687
    [9] S. Hayat, M. A. Malik, M. Imran, Computing topological indices of honeycomb derived networks, Rom. J. Inf. Sci. Technol., 18 (2015), 144–165.
    [10] J. Hao, Theorems about zagreb indices and modified zagreb indices, MATCH Commun. Math. Comput. Chem., 65 (2011), 659–670.
    [11] T. U. Islam, Z. S. Mufti, H. Iqbal, S, Miraj, M. Ajmal, M-polynomial and entropy of para-line graph of napthalene, Int. J. Adv. Appl. Sci., 6 (2019), 71–76.
    [12] H. Iqbal, M. O. Ahmad, K. Ali, S. T. R. Rizvi, Eccentricity based topological indices of some benzenoid structures, Utilitas Math., 116 (2020), 57–71.
    [13] H. Iqbal, Jabeen, Z. S. Mufti, M. O. Ahmad, On topological indices of subdivided and line graph of subdivided friendship graph, Int. J. Discrete Math., 4 (2019), 56–60. doi: 10.11648/j.dmath.20190401.19
    [14] M. Imran, S. Hayat, M. Y. H. Malik, On topological indices of certain interconnection networks, Appl. Math. Comput., 244 (2014), 936–951.
    [15] H. Iqbal, K. Ali, S. T. R. Rizvi, H. A. Wajid, Computing ve topological indices of tickysim spiNNaker model, TWMS J. Appl. Eng. Math., (2020).
    [16] H. Iqbal, Jabeen, K. Ali, H. A. Wajid, Z. S. Mufti, M. O. Ahmad, On ABC4 and GA5 index of subdivided and line graph of subdivided dutch windmill graph, J. Global Res. Math. Arch., 6 (2019).
    [17] M. Imran, S. Akhter, M. K Jamil, Computation of topological indices of NEPS of graphs, Complexity, (2021), 9911226.
    [18] M. K. Jamil, M. Imran, A. Javed, R. Hasni, On the first general zagreb eccentricity index, AIMS Math., 6 (2020), 532–542.
    [19] M. Javaid, C. Y. Jung, M-polynomial and topological indices of silicate and oxide networks, Int. J. Pure Appl. Math., 115 (2017), 129–152.
    [20] V. R. Kulli, The gourava indices and coindices of graphs, Ann. Pure Appl. Math., 14 (2017), 33–38.
    [21] V. R. Kulli, On hyper-gourava indices and coindices, Int. J. Math. Arch., 8 (2017), 116–120.
    [22] M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and degree-based topological indices of polyhex nanotubes, J. Symmetry, 8 (2016), 149. doi: 10.3390/sym8120149
    [23] D. Maji, G. Ghorai, The First entire zagreb index of various corona products and their bounds, J. Math. Comput. Sci., 11 (2021), 6018–6044.
    [24] I. Muhammad, A. Shehnaz, S. Hani, Sharp bounds for the general randic index of transformation graphs, J. Intell. Fuzzy Syst., 39 (2020), 7787–7794. doi: 10.3233/JIFS-201139
    [25] Z. S. Mufti, A. Amin, A. Wajid, S. Caudhary, H. Iqbal, N. Ali, On sanskruti and harmonic indices of a certain graph structure, Int. J. Adv. Appl. Sci., 7 (2020), 1–8.
    [26] T. Réti, On the relationships between the first and second zagreb indices, MATCH Commun. Math. Comput. Chem., 68 (2012), 169–188.
    [27] M. K. Siddiqui, M. Imran, A. Ahmad, On zagreb indices zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput., 280 (2016), 132–139.
    [28] M. A. Saleem, Retractions and homomorphisms on some operations of graphs, J. Math., (2018), 1–4.
    [29] Y. Yang, D. Klein, Two-point resistances and random walks on stellated regular graphs, J. Phys. Math. Theor., 52 (2018), 075201.
    [30] Y. Yuan, B. Zhou, N. Trinajstic, On geometric-arithmetic index, J. Math. Chem., 47 (2010), 833–841. doi: 10.1007/s10910-009-9603-8
    [31] L. Yan, W. Gao, J. Li, General harmonic index and general sum connectivity index of polyomino chains and nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 3940–3944. doi: 10.1166/jctn.2015.4308
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2625) PDF downloads(151) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog