In this paper, we determine the exact metric and fault-tolerant metric dimension of the benzenoid tripod structure. We also computed the generalized version of this parameter and proved that all the parameters are constant. Resolving set $ {L} $ is an ordered subset of nodes of a graph $ {C} $, in which each vertex of $ {C} $ is distinctively determined by its distance vector to the nodes in $ {L} $. The cardinality of a minimum resolving set is called the metric dimension of $ {C} $. A resolving set $ L_{f} $ of $ {C} $ is fault-tolerant if $ {L}_{f}\setminus{b} $ is also a resolving set, for every $ {b} $ in $ {L}_{f}. $ Resolving set allows to obtain a unique representation for chemical structures. In particular, they were used in pharmaceutical research for discovering patterns common to a variety of drugs. The above definitions are based on the hypothesis of chemical graph theory and it is a customary depiction of chemical compounds in form of graph structures, where the node and edge represents the atom and bond types, respectively.
Citation: Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem. Computing vertex resolvability of benzenoid tripod structure[J]. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387
In this paper, we determine the exact metric and fault-tolerant metric dimension of the benzenoid tripod structure. We also computed the generalized version of this parameter and proved that all the parameters are constant. Resolving set $ {L} $ is an ordered subset of nodes of a graph $ {C} $, in which each vertex of $ {C} $ is distinctively determined by its distance vector to the nodes in $ {L} $. The cardinality of a minimum resolving set is called the metric dimension of $ {C} $. A resolving set $ L_{f} $ of $ {C} $ is fault-tolerant if $ {L}_{f}\setminus{b} $ is also a resolving set, for every $ {b} $ in $ {L}_{f}. $ Resolving set allows to obtain a unique representation for chemical structures. In particular, they were used in pharmaceutical research for discovering patterns common to a variety of drugs. The above definitions are based on the hypothesis of chemical graph theory and it is a customary depiction of chemical compounds in form of graph structures, where the node and edge represents the atom and bond types, respectively.
[1] | B. Yang, M. Rafiullah, H. M. A. Siddiqui, S. Ahmad, On Resolvability parameters of some wheel-related graphs, J. Chem., 2019 (2019), 1–9. http://dx.doi/10.1155/2019/9259032 doi: 10.1155/2019/9259032 |
[2] | S. Imran, M. K. Siddiqui, M. Hussain, Computing the upper bounds for the metric dimension of cellulose network, Appl. Math. E-Notes, 19 (2019), 585–605. https://www.math.nthu.edu.tw/amen/2019/AMEN-181121.pdf |
[3] | M. K. Siddiqui, M. Imran, Computing the metric and partition dimension of H-Naphtalenic and VC5C7 nanotubes, J. Optoelectron. Adv. M., 17 (2015), 790–794. https://www.semanticscholar.org/paper/Computing-the-metric-and-partition-dimension-of-and-Siddiqui-Imran/b79571b2517ff2f37c731687cd5ea1787d9d05b6 |
[4] | S. Manzoor, M. K. Siddiqui, S. Ahmad, On entropy measures of polycyclic hydroxychloroquine used for novel Coronavirus (COVID-19) treatment, Polycycl. Aromat. Comp., (2020). http://dx.doi/10.1080/10406638.2020.1852289 |
[5] | M. K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran, Computing topological indices of certain networks, J. Optoelectron. Adv. M., 18 (2016), 9–10. http://dx.doi/10.1016/j.amc.2014.04.091 doi: 10.1016/j.amc.2014.04.091 |
[6] | D. Maji, G. Ghorai, A novel graph invariant: The third leap Zagreb index under several graph operations, Discret. Math. Algorit., 11 (2019), 1950054. http://dx.doi/10.1142/s179383091950054x doi: 10.1142/s179383091950054x |
[7] | D. Maji, G. Ghorai, M. K. Mahmood, M. A. Alam, On the inverse problem for some topological indices, J. Math., 2021 (2021), 1–8. http://dx.doi/10.1155/2021/9411696 doi: 10.1155/2021/9411696 |
[8] | D. Maji, G. Ghorai, Computing F-index, coindex and Zagreb polynomials of the kth generalized transformation graphs, Heliyon, 6 (2020), e05781. http://dx.doi/10.1016/j.heliyon.2020.e05781 doi: 10.1016/j.heliyon.2020.e05781 |
[9] | A. Ahmad, M. Bača, S. Sultan, On metric dimension and minimal doubly resolving sets of Harary graph, Acta Math. Univ. Comen., 89 (2020), 123–129. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1032/795 |
[10] | A. Ahmad, M. Bača, S. Sultan, Computing the metric dimension of Kayak Paddles graph and Cycles with chord, Proyecciones J. Math., 39 (2020), 287–300. http://dx.doi/10.22199/issn.0717-6279-2020-02-0018 doi: 10.22199/issn.0717-6279-2020-02-0018 |
[11] | A. Ahmad, M. Baǎ, S. Sultan, Minimal doubly resolving sets of Necklace graph, Math. Rep., 20 (2018), 123–129. http://imar.ro/journals/Mathematical-Reports/Pdfs/2018/2/2.pdf |
[12] | T. Vetrik, A. Ahmad, Computing the metric dimension of the categorial product of graphs, Int. J. Comput. Math., 94 (2017), 363–371. http://dx.doi/10.1080/00207160.2015.1109081 doi: 10.1080/00207160.2015.1109081 |
[13] | A. Ahmad, S. Sultan, On minimal doubly resolving sets of circulant graphs, Acta Mechanica Slovaca, 20 (2017), 6–11. http://dx.doi/10.21496/ams.2017.002 doi: 10.21496/ams.2017.002 |
[14] | M. Basak, L. Saha, G. K. Das, K. Tiwary, Fault-tolerant metric dimension of circulant graphs $C_n(1; 2; 3), $ Theor. Comput. Sci., 817 (200), 66–79. http://dx.doi/10.1016/j.tcs.2019.01.011 |
[15] | M. A. Chaudhry, I. Javaid, M. Salman, Fault-Tolerant metric and partition dimension of graphs, Utliltas Mathematica, 83 (2010), 187–199. https://www.researchgate.net/publication/259574039-Fault-Tolerant-Metric-and-Partition-Dimension-of-Graphs |
[16] | I. Javaid, M. Salman, M. A. Chaudhry, S. Shokat, Fault-tolerance in resolvability, Utliltas Mathematica, 80 (2009), 263–275. https://www.researchgate.net/publication/259573732-Fault-tolerance-in-resolvability |
[17] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. http://dx.doi/10.1109/ACCESS.2020.3014883 doi: 10.1109/ACCESS.2020.3014883 |
[18] | H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78–97. http://dx.doi/10.3390/math7010078 doi: 10.3390/math7010078 |
[19] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. http://dx.doi/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010 |
[20] | Y. M. Chu, M. F. Nadeem, M. Azeem, M. K. Siddiqui, On sharp bounds on partition dimension of convex polytopes, IEEE Access, 8 (2020), 224781–224790. http://dx.doi/10.1109/ACCESS.2020.3044498 doi: 10.1109/ACCESS.2020.3044498 |
[21] | J. B. Liu, M. F. Nadeem, M. Azeem, Bounds on the partition dimension of convex polytopes, Comb. Chem. Hight. T. Scr., (2020). http://dx.doi/10.2174/1386207323666201204144422 |
[22] | P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14 (1975), 549–559. |
[23] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195. |
[24] | G. Chartrand, E. Salehi, P. Zhang, The partition dimension of graph, Aequationes Math., 59 (2000), 45–54. http://dx.doi/10.1007/PL00000127 doi: 10.1007/PL00000127 |
[25] | G. Chartrand, L. Eroh, M. A. O. Johnson, R. Ortrud, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. http://dx.doi/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0 |
[26] | M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. http://dx.doi/10.1080/10543409308835060 doi: 10.1080/10543409308835060 |
[27] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. http://dx.doi/10.1016/0166-218X(95)00106-2 |
[28] | S. Söderberg, H. S. Shapiro, A combinatory detection problem, Am. Math. Mon., 70 (1963), 1066–1070. http://dx.doi/10.2307/2312835 doi: 10.2307/2312835 |
[29] | P. Manuel, R. Bharati, I. Rajasingh, M. C. Monica, On minimum metric dimension of honeycomb networks, J. Discrete Algorit., 6 (2008), 20–27. http://dx.doi/10.1016/j.jda.2006.09.002 doi: 10.1016/j.jda.2006.09.002 |
[30] | A. Sebö, E. Tannier, On metric generators of graphs, Math. Operat. Res., 29 (2004), 383–393. |
[31] | M. Perc, J. Gómez-Gardeñes, A. Szolnoki, L. M. Floría, Y. Moreno, Evolutionary dynamics of group interactions on structured populations: A review, J. R. Soc. Interface, 10 (2013). http://dx.doi/10.1098/rsif.2012.0997 |
[32] | M. Perc, A. Szolnoki, Coevolutionary games-A mini review, Biosystems, 99 (2010), 109–125. http://dx.doi/10.1016/j.biosystems.2009.10.003 doi: 10.1016/j.biosystems.2009.10.003 |
[33] | Z. Hussain, M. Munir, M. Choudhary, S. M. Kang, Computing metric dimension and metric basis of $2D$ lattice of alpha-boron nanotubes, Symmetry, 10 (2018). http://dx.doi/10.3390/sym10080300 |
[34] | S. Krishnan, B. Rajan, Fault-tolerant resolvability of certain crystal structures, Appl. Math., 7 (2016), 599–604. http://dx.doi/10.4236/am.2016.77055 doi: 10.4236/am.2016.77055 |
[35] | H. M. A. Siddiqui, M. Imran, Computing metric and partition dimension of 2-Dimensional lattices of certain nanotubes, J. Comput. Theor. Nanos., 11 (2014), 2419–2423. |
[36] | M. Hauptmann, R. Schmied, C. Viehmann, Approximation complexity of metric dimension problem, J. Discrete Algorit., 14 (2012), 214–222. http://dx.doi/10.1016/j.jda.2011.12.010 doi: 10.1016/j.jda.2011.12.010 |
[37] | H. R. Lewis, M. R. Garey, D. S. Johnson, Computers and intractability, A guide to the theory of NP-completeness, J. Symbolic Logic, 48 (1983), 498–500. https://dl.acm.org/doi/book/10.5555/578533 |
[38] | M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. http://dx.doi/10.1080/10543409308835060 doi: 10.1080/10543409308835060 |
[39] | M. A. Johnson, Browsable structure-activity datasets, Advances in molecular similarity, JAI Press Connecticut, (1998), 153–170. |
[40] | M. F. Nadeem, M. Azeem, A. Khalil, The locating number of hexagonal Möbius ladder network J. Appl. Math. Comput., (2020). http://dx.doi/10.1007/s12190-020-01430-8 |
[41] | A. N. A. Koam, A. Ahmad, M. E. Abdelhag, M. Azeem, Metric and fault-tolerant metric dimension of hollow coronoid, IEEE Access, 9 (2021), 81527–81534. http://dx.doi/10.1109/ACCESS.2021.3085584 doi: 10.1109/ACCESS.2021.3085584 |
[42] | A. Shabbir, M. Azeem, On the partition dimension of tri-hexagonal alpha-boron nanotube, IEEE Access, 9 (2021), 55644–55653. http://dx.doi/10.1109/ACCESS.2021.3071716 doi: 10.1109/ACCESS.2021.3071716 |
[43] | N. Mehreen, R. Farooq, S. Akhter, On partition dimension of fullerene graphs, AIMS Math., 3 (2018), 343–352. http://dx.doi/10.3934/Math.2018.3.343 doi: 10.3934/Math.2018.3.343 |
[44] | A. Ali, W. Nazeer, M. Munir, S. M. Kang, M-Polynomials and topological indices Of Zigzag and rhombic benzenoid systems, Open Chem., 16 (2018), 122–135. http://dx.doi/10.1515/chem-2018-0010 doi: 10.1515/chem-2018-0010 |
[45] | C. P. Chou, Y. Li, H. A. Witek, Zhang–Zhang polynomials of various classes of benzenoid systems, MATCH-Commun. Math. Co., 68 (2012), 31–64. vvhttps://waseda.pure.elsevier.com/en/publications/determination-of-zhang-zhang-polynomials-for-various-classes-of-b |
[46] | M. K. Jamil, M. Imran, K. A. Sattar, Novel face index for benzenoid hydrocarbons, Mathematics, 8 (2020). http://dx.doi/10.3390/math8030312 |