Research article

Modified inertial Ishikawa iterations for fixed points of nonexpansive mappings with an application

  • Received: 15 September 2021 Revised: 07 January 2022 Accepted: 17 January 2022 Published: 07 February 2022
  • MSC : 47H09, 47J25

  • This manuscript aims to prove that the sequence $ \{\nu _{n}\} $ created iteratively by a modified inertial Ishikawa algorithm converges strongly to a fixed point of a nonexpansive mapping $ Z $ in a real uniformly convex Banach space with uniformly Gâteaux differentiable norm. Moreover, zeros of accretive mappings are obtained as an application. Our results generalize and improve many previous results in this direction. Ultimately, two numerical experiments are given to illustrate the behavior of the purposed algorithm.

    Citation: Hasanen A. Hammad, Hassan Almusawa. Modified inertial Ishikawa iterations for fixed points of nonexpansive mappings with an application[J]. AIMS Mathematics, 2022, 7(4): 6984-7000. doi: 10.3934/math.2022388

    Related Papers:

  • This manuscript aims to prove that the sequence $ \{\nu _{n}\} $ created iteratively by a modified inertial Ishikawa algorithm converges strongly to a fixed point of a nonexpansive mapping $ Z $ in a real uniformly convex Banach space with uniformly Gâteaux differentiable norm. Moreover, zeros of accretive mappings are obtained as an application. Our results generalize and improve many previous results in this direction. Ultimately, two numerical experiments are given to illustrate the behavior of the purposed algorithm.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 138–181.
    [2] E. Picard, Mémoire sur la thórie des équations aux derivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210.
    [3] W. R. Mann, Mean value method in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [4] A. Genel, J. Lindenstrass, An example concerning fixed points, Isr. J. Math., 22 (1975), 81–86. https://doi.org/10.1007/BF02757276 doi: 10.1007/BF02757276
    [5] J. Zhao, Q. Yang, A note on the Krasnoselskii–Mann theorem and its generalizations, Inverse Probl., 23 (2007), 1011–1016. https://doi.org/10.1088/0266-5611/23/3/010 doi: 10.1088/0266-5611/23/3/010
    [6] R. E. Bruck, Asymptotic behavior of nonexpansive mappings, In: Sine, R.C. (ed.) Contemporary Mathematics, 18, Fixed Points and Nonexpansive Mappings, AMS, Providence (1980).
    [7] C. Byrne, Unified treatment of some algorithms in signal processing and image construction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [8] C. I. Podilchuk, R. J. Mammone, Image recovery by convex projections using a least-squares constraint, J. Opt. Soc. Am., A7 (1990), 517–521. https://doi.org/10.1364/JOSAA.7.000517 doi: 10.1364/JOSAA.7.000517
    [9] D. Youla, On deterministic convergence of iterations of related projection mappings, J. Vis. Commun. Image Represent, 1 (1990), 12–20. https://doi.org/10.1016/1047-3203(90)90013-L doi: 10.1016/1047-3203(90)90013-L
    [10] V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics, 1912, Springer, Berlin (2007).
    [11] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, 1965 (2009), XVII, 326p, ISBN 978-1-84882-189-7.
    [12] H. Almusawa, H. A. Hammad, N. Sharma, Approximation of the fixed point for unified three-step iterative algorithm with convergence analysis in Busemann spaces, Axioms, 10 (2021), 26. https://doi.org/10.3390/axioms10010026 doi: 10.3390/axioms10010026
    [13] H. A. Hammad, H. ur Rehman, H. Almusawa, Tikhonov regularization terms for accelerating inertial Mann-like algorithm with Applications, Symmetry, 13 554, (2021). https://doi.org/10.3390/sym13040554
    [14] S. Al-Omari, H. Almusawa, K. S. Nisar, A new aspect of generalized integral operator and an estimation in a generalized function theory, Adv. Differ. Equ., 2021 (2021), 357.
    [15] R. I. Boţ, E. R. Csetnek, D. Meier, Inducing strong convergence into the asymptotic behavior of proximal splitting algorithms in Hilbert spaces, Optim., Methods Softw., 34 (2019), 489–514. https://doi.org/10.1080/10556788.2018.1457151 doi: 10.1080/10556788.2018.1457151
    [16] H. Attouch, Viscosity solutions of minimization problems, SIAM J. Optim., 6 (1996), 769–806. https://doi.org/10.1137/S1052623493259616 doi: 10.1137/S1052623493259616
    [17] D. R. Sahu, J. C. Yao, The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces, J. Global Optim., 51 (2011), 641–655. https://doi.org/10.1007/s10898-011-9647-8 doi: 10.1007/s10898-011-9647-8
    [18] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [19] Q. L. Dong, Y. Y. Lu, J. Yang, The extragradient algorithm with inertial effects for solving the variational inequality, Optimization, 65 (2016), 2217–2226. https://doi.org/10.1080/02331934.2016.1239266 doi: 10.1080/02331934.2016.1239266
    [20] J. Fan, L. Liu, X. Qin, A subgradient extragradient algorithm with inertial effects for solving strongly pseudomonotone variational inequalities, Optimization, 69 (2020), 2199–2215. https://doi.org/10.1080/02331934.2019.1625355 doi: 10.1080/02331934.2019.1625355
    [21] H. A. Hammad, H. ur Rehman, M. De la Sen, Advanced algorithms and common solutions to variational inequalities, Symmetry, 12 1198, (2020).
    [22] Y. Shehu, X. H. Li, Q. L. Dong, An efficient projection-type method for monotone variational inequalities in Hilbert spaces, Numer. Algorithm, 84 (2020), 365–388. https://doi.org/10.1007/s11075-019-00758-y doi: 10.1007/s11075-019-00758-y
    [23] B. Tan, S. Xu, S. Li, Inertial shrinking projection algorithms for solving hierarchical variational inequality problems, J. Nonlinear Convex Anal., 21 (2020), 871–884.
    [24] H. A. Hammad, H. ur Rehman, M. De la Sen, Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm with applications, Math. Probl. Eng., 2020, Article ID 7487383, 14 pages.
    [25] H. A. Hammad, W. Cholamjiak, D. Yambangwai, H. Dutta, A modified shrinking projection methods for numerical reckoning fixed points of G-nonexpansive mappings in Hilbert spaces with graph, Miskolc Math. Notes, 20 (2019), 941–956. https://doi.org/10.18514/MMN.2019.2954 doi: 10.18514/MMN.2019.2954
    [26] H. A. Hammad, W. Cholamjiak, D. Yambangwai, Modified hybrid projection methods with SP iterations for quasi-nonexpansive multivalued mappings in Hilbert spaces, B. Iran. Math. Soc., 47 (2021), 1399–1422. https://doi.org/10.1007/s41980-020-00448-9 doi: 10.1007/s41980-020-00448-9
    [27] P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223–236. https://doi.org/10.1016/j.cam.2007.07.021 doi: 10.1016/j.cam.2007.07.021
    [28] Q. L. Dong, H. B. Yuan, Y. J. Cho, T. M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12 (2018), 87–102.
    [29] T. M. Tuyen, H. A. Hammad, Effect of shrinking projection and CQ-methods on two inertial forward–backward algorithms for solving variational inclusion problems, Rendiconti del Circolo Matematico di Palermo Series 2, 2 (2021), 1669–1683.
    [30] W. L. Bynum, Normal structure coefficients for Banach spaces, Pac. J. Math., 86 (1980), 427–436. https://doi.org/10.2140/pjm.1980.86.427 doi: 10.2140/pjm.1980.86.427
    [31] T. C. Lim, H. K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal., TMA22 (1994), 1345–1355. https://doi.org/10.1016/0362-546X(94)90116-3 doi: 10.1016/0362-546X(94)90116-3
    [32] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127–1138. https://doi.org/10.1016/0362-546X(91)90200-K doi: 10.1016/0362-546X(91)90200-K
    [33] F. E. Browder, Nonexpansive nonlinear mappings in a Banach space, Proc. Nat. Acad. Sci. USA., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [34] S. Shioji, W. Takahashim, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641–3645. https://doi.org/10.1090/S0002-9939-97-04033-1 doi: 10.1090/S0002-9939-97-04033-1
    [35] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [36] B. Tan, S. Y. Cho, An inertial Mann-like algorithm for fixed points of nonexpansive mappings in Hilbert spaces, J. Appl. Numer. Optim., 2 (2020), 335–351.
    [37] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508–520.
    [38] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic, Dordrecht (1990).
    [39] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Am. Math. Soc., 73 (1967), 875–882. https://doi.org/10.1090/S0002-9904-1967-11823-8 doi: 10.1090/S0002-9904-1967-11823-8
    [40] W. O. Ray, An elementary proof of surjectivity for a class of accretive operators, Proc. Am. Math. Soc., 75 (1979), 255–258. https://doi.org/10.1090/S0002-9939-1979-0532146-0 doi: 10.1090/S0002-9939-1979-0532146-0
    [41] J. Caristi, The fixed point theory for mappings satisfying inwardness conditions, Ph.D. Thesis, The University of Iowa, Iowa City (1975).
    [42] H. Robert, Jr. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, SIAM Rev., 20 (2006), 202–204.
    [43] F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Am. Math. Soc., 69 (1963), 862–874. https://doi.org/10.1090/S0002-9904-1963-11068-X doi: 10.1090/S0002-9904-1963-11068-X
    [44] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin (1985).
    [45] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [46] K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308. https://doi.org/10.1006/jmaa.1993.1309 doi: 10.1006/jmaa.1993.1309
    [47] K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67 (2006), 2350–2360. https://doi.org/10.1016/j.na.2006.08.032 doi: 10.1016/j.na.2006.08.032
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1596) PDF downloads(64) Cited by(2)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog