This manuscript established a comprehensive analysis of a general class of fractional order delay differential equations with Caputo-Fabrizio fractional derivative (CFFD). Functional analysis was used to examine the existence and uniqueness of the suggested class and to generate sufficient requirements for Ulam-Hyers (UH) type stability. Further, a numerical method based on Lagrange interpolation is used to compute approximate solution. Then, some applications in physical dynamics including a houseflies model and a Cauchy type problem were discussed to illustrate the established analysis with graphical illustrations.
Citation: Kamal Shah, Muhammad Sher, Muhammad Sarwar, Thabet Abdeljawad. Analysis of a nonlinear problem involving discrete and proportional delay with application to Houseflies model[J]. AIMS Mathematics, 2024, 9(3): 7321-7339. doi: 10.3934/math.2024355
This manuscript established a comprehensive analysis of a general class of fractional order delay differential equations with Caputo-Fabrizio fractional derivative (CFFD). Functional analysis was used to examine the existence and uniqueness of the suggested class and to generate sufficient requirements for Ulam-Hyers (UH) type stability. Further, a numerical method based on Lagrange interpolation is used to compute approximate solution. Then, some applications in physical dynamics including a houseflies model and a Cauchy type problem were discussed to illustrate the established analysis with graphical illustrations.
[1] | J. S. Jacob, J. H. Priya, A. Karthika, Applications of fractional calculus in science and engineering, J. Crit. Rev., 7 (2020), 4385–4394. |
[2] | R. E. Gutierrez, J. M. Rosário, J. T. Machado, Fractional order calculus: Basic concepts and engineering applications, Math. Prob. Eng., 2010 (2010), 375858. https://doi.org/10.1155/2010/375858 doi: 10.1155/2010/375858 |
[3] | M. Magdziarz, A. Weron, K. Burnecki, J. Klafter, Fractional Brownian motion versus the continuous-time random walk: A simple test for subdiffusive dynamics, Phy. Rev. Lett., 103 (2009), 180602. https://doi.org/10.1103/PhysRevLett.103.180602 doi: 10.1103/PhysRevLett.103.180602 |
[4] | E. Hilfer, Applications of fractional calculus in physics, Singapore: World scientific, 2000. |
[5] | S. Kumar, R. Kumar, R. P. Agarwal, B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods, Math. Method. Appl. Sci., 43 (2020), 5564–5578. https://doi.org/10.1002/mma.6297 doi: 10.1002/mma.6297 |
[6] | F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002 |
[7] | K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Software, 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012 |
[8] | M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032. |
[9] | Y. Zou, S. E. Li, B. Shao, B. Wang, State-space model with non-integer order derivatives for lithium-ion battery, Appl. Energy, 161 (2016), 330–336. https://doi.org/10.1016/j.apenergy.2015.10.025 doi: 10.1016/j.apenergy.2015.10.025 |
[10] | K. J. Latawiec, R. Stanisławski, M. Łukaniszyn, W. Czuczwara, M. Rydel, Fractional-order modeling of electric circuits: Modern empiricism vs. classical science, In: 2017 Progress in applied electrical engineering, 2017. https://doi.org/10.1016/j.apenergy.2015.10.025 |
[11] | R. Prasad, K. Kumar, R. Dohare, Caputo fractional order derivative model of Zika virus transmission dynamics, J. Math. Comput. Sci., 28 (2023), 145–157. https://doi.org/10.22436/jmcs.028.02.03 doi: 10.22436/jmcs.028.02.03 |
[12] | G. S. Teodoro, J. T. Machado, E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008 |
[13] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[14] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[15] | Y. Alruwaily, L. Almaghamsi, K. Karthikeyan, E. S. El-hady, Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Mathematics, 8 (2023), 10067–10094. https://doi.org/10.3934/math.2023510 doi: 10.3934/math.2023510 |
[16] | T. Zhang, Y. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl. Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675 |
[17] | M. Khan, Z. Ahmad, F. Ali, N. Khan, I. Khan, K. S. Nisar, Dynamics of two-step reversible enzymatic reaction under fractional derivative with Mittag-Leffler Kernel, PLoS One, 18 (2023), e0277806. https://doi.org/10.1371/journal.pone.0277806 doi: 10.1371/journal.pone.0277806 |
[18] | M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Prog. Frac. Differ. Appl., 2 (2016), 1–11. https://doi.org/10.18576/pfda/020101 doi: 10.18576/pfda/020101 |
[19] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[20] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), 87–92. https://doi.org/10.12785/pfda/010202 |
[21] | R. Gul, M. Sarwar, K. Shah, T. Abdeljawad, F. Jarad, Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations, J. Funct. Spaces, 2020 (2020), 1–9. https://doi.org/10.1155/2020/4714032 doi: 10.1155/2020/4714032 |
[22] | H. Smith, H. Smith, Distributed delay equations and the linear chain trick: An introduction to delay differential equations with applications to the life sciences, New York: Springer, 57 (2011), 119–130. https://doi.org/10.1007/978-1-4419-7646-8_7 |
[23] | B. Balachandran, T. Kalmár-Nagy, D. E. Gilsinn, Delay differential equations, Berlin: Springer, 2009. |
[24] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[25] | M. Sher, K. Shah, J. Rassias, On qualitative theory of fractional order delay evolution equation via the prior estimate method, Math. Method. Appl. Sci., 43 (2020), 6464–6475. https://doi.org/10.1002/mma.6390 doi: 10.1002/mma.6390 |
[26] | S. Ruan, Delay differential equations in single species dynamics, In: Delay differential equations and applications, Dordrecht: Springer, 2006. https://doi.org/10.1007/1-4020-3647-7_11 |
[27] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[28] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Natl. Acad. Sci., 72 (1978), 297–300. https://doi.org/10.2307/2042795 doi: 10.2307/2042795 |
[29] | N. K. Mahdi, A. R. Khudair, Linear fractional dynamic equations: Hyers-Ulam stability analysis on time scale, Result. Cont. Opt., 14 (2024), 100347. https://doi.org/10.1016/j.rico.2023.100347 doi: 10.1016/j.rico.2023.100347 |
[30] | M. Rhaima, L. Mchiri, A. B. Makhlouf, H. Ahmed, Ulam type stability for mixed Hadamard and Riemann-Liouville fractional stochastic differential equations, Chaos Solitons Fractals, 178 (2024), 114356. https://doi.org/10.1016/j.chaos.2023.114356 doi: 10.1016/j.chaos.2023.114356 |
[31] | A. Benzahi, N. Abada, N. Arar, S. A. Idris, M. S. Abdo, W. Shatanawi, Caputo-Fabrizio type fractional differential equations with non-instantaneous impulses: Existence and stability results, Alex. Eng. J., 87 (2024), 186–200. https://doi.org/10.1016/j.aej.2023.12.036 doi: 10.1016/j.aej.2023.12.036 |
[32] | H. Khan, S. Ahmed, J. Alzabut, A. T. Azar, A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy, Chaos Solitons Fractals, 174 (2023), 113901. https://doi.org/10.1016/j.chaos.2023.113901 doi: 10.1016/j.chaos.2023.113901 |
[33] | A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Solitons Fractals, 122 (2019), 119–128. https://doi.org/10.1016/j.chaos.2019.03.022 doi: 10.1016/j.chaos.2019.03.022 |
[34] | Y. A. R. Awad, I. H. Kaddoura, On the Ulam-Hyers-Rassias stability for a boundary value problem of implicit $\Psi$-Caputo fractional integro-differential equation, TWMS J. Appl. Eng. Math., 14 (2024), 79–93. https://orcid.org/0000-0001-9878-2482 |
[35] | M. Alam, A. Zada, T. Abdeljawad, Stability analysis of an implicit fractional integro-differential equation via integral boundary conditions, Alex. Eng. J., 87 (2024), 501–514. https://doi.org/10.1016/j.aej.2023.12.055 doi: 10.1016/j.aej.2023.12.055 |
[36] | M. Berardi, G. Girardi, Modeling plant water deficit by a non-local root water uptake term in the unsaturated flow equation, Commun. Nonl. Sci. Numer. Simul., 128 (2024), 107583. https://doi.org/10.1016/j.cnsns.2023.107583 doi: 10.1016/j.cnsns.2023.107583 |
[37] | P. Przybylowicz, Y. Wu, X. Xie, On approximation of solutions of stochastic delay differential equations via randomized Euler scheme, Appl. Numer. Math., 197 (2024), 143–163. https://doi.org/10.1016/j.apnum.2023.11.008 doi: 10.1016/j.apnum.2023.11.008 |
[38] | F. V. Difonzo, P. Przybylowicz, Y. Wu, Existence, uniqueness and approximation of solutions to Carathéodory delay differential equations, J. Comput. Appl. Math., 436 (2024), 115411. https://doi.org/10.1016/j.cam.2023.115411 doi: 10.1016/j.cam.2023.115411 |
[39] | R. Garrappa, Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6 (2018), 16. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016 |
[40] | A. Bellen, M. Zennaro, Numerical methods for delay differential equations: Numerical mathematics and scince, Oxford: Oxford University Press, 2013. |
[41] | M. K. Khan, A. Atangana, Numerical methods for fractal-fractional differential equations and engineering: Simulations and modeling, New York: CRC Press, 2023. |