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1. Introduction

The development of fractional calculus (FC) has gotten a lot of interest recently in order to study
differentiation and integration to non-integer order. This area of FC has significant applications in
various field of science and technology, where real-world problems can be represented as mathematical
equations. Fractional differentiation and integration research is intrinsically multidisciplinary and
finds application in a wide range of fields, including complex systems, medical imaging, continuum
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mechanics, elasticity, signal analysis, quantum mechanics, bioengineering, biomedicine, financial
systems, social systems, pollution control, turbulence, population growth and dispersal, landscape
evolution, and pollution control (see [1]). The utilization of real order derivatives has been found
to be very useful in many practical applications as compared to integer order derivatives. For instance,
when modelling anomalous diffusion phenomena, the fractal structure more accurately captures the
actual conditions of the medium, such as in the case of reservoirs where determining an Euclidian
structure is challenging by nature. In addition, FC provides novel mathematical tools for modeling
physical and biological processes. For more sophisticated applications, we refer to [2].

In addition, the aforementioned field is applicable in a wide range of other scientific subfields, such
as physics [3, 4], biological sciences [5, 6], chemical sciences [7], and a variety of other fields [8].
While integer order was being developed, the idea of any arbitrary order derivative was also being
developed. It has not been deemed the answer to problems that occur in the actual world due to the fact
that it is quite complicated. In later years, as technology continued to evolve and new definitions of
complex functions were developed, the field received the attention it deserved. The idea has currently
been effectively used to address a wide range of complex scientific problems. Numerous real-world
issues have been resolved by using fractional derivatives instead of integer order. One illustration of
these problems is the state-space model for lithium-ion batteries with non-integer order derivatives
(see [9]). The Caputo fractional order derivative model of Zika virus transmission dynamics [10],
current empiricism, and classical science are all examples of fractional-order modeling of electric
circuits [11].

It is worth mentioning that “fractional derivative” does not have a single widely accepted definition.
Numerous definitions, such as the Riemann-Liouville (R-L), Caputo definitions [12], conformable
fractional derivative [13], Atangana-Baleanu defintion [14], etc, can be found in the literature.
These ideas have recently been used as the foundation for breaking down numerous mathematical
problems [15–17]. Problems related to material heterogeneities can not be explained using R-L or
Caputo concepts [18]. To overcome this difficulty, authors in [19] defined another definition of arbitrary
order derivative with non-singular kernel called Caputo-Fabrizio definition. Some properties of the
new concepts have been studied by Losada and Nieto in [18]. Various problems have been investigated
for existence and uniqueness by the applications of mathematical analysis using the Caputo-Fabrizio
fractional derivative (CFFD), we refer to [20] and [21] for properties and study of boundary value
problems using CFFD.

It is also very important to note that delay-type problems have received a lot of attention from
researchers working in fractional calculus. This is a significant subfield in the context of this sector.
Many scholars have devoted a tremendous amount of time to finding solutions to delay-type problems
(see [22, 23]). Additionally, a delay can be introduced to a dynamical problem to account for the
time it takes for a disease to manifest its symptoms. As an example, we incorporate a delay in a
fractional-order epidemic model. As we have already said, models utilizing ordinary fractional order
derivatives need a lot of storage space and result in inefficient operation. As a result, researchers
have developed a short-memory fractional modeling process in addition to short-memory fractional
derivatives in order to overcome the problem. You can get qualitative analysis of delay differential
equations in [24] and [25].

Here it is worth mentioning that equations involve two delay terms appear in various neurological
models. For instance Kitching in 1977 highlighted the necessity to take into account a number of
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time delay elements in the life cycle of the Australian blowfly Lucila cuprina while estimating its
population. Therefore, it is interesting to mention that two delays terms problems have increasingly
been used in modelling various process in physiological, medical models (see [26]). Inspired from the
above discussion, we are going to investigate a general class of aforementioned equation under CFFD.
The proposed problem involves discrete and proportional delay terms. To the best of our knowledge,
such problems have not been studied under the mentioned fractional operator. The suggested problem
is 

CFDδ0+U(z) = Φ(z,U(z),U(λz),U(z − τ)), z ∈ [0,T],
U(0) = U0 + Ψ(U),
U(z) = Φ(z), z ∈ [−τ, 0),

(1.1)

where 0 < δ ≤ 1, 0 < λ < 1, Φ ∈ C[I × R3,R], Ψ ∈ C[R,R], and Φ : [−τ, 0) → R, is a continuous
history function.

Here, we remark that delay terms appear in differential equations with advanced arguments in
mathematical models of various real world problems. For instance, the economic models, influence
and processing are subject to natural delays. Researchers have contributed to the theory and stability
analysis of delay differential equations. However, the problems involving mixed delay terms of discrete
and proportional type are rarely considered under the advanced arguments of fractional calculus.
Particularly, the considered problem with mixed delay terms has not been studied by using the non-
singular type Caputo-Fabrizio derivative. Also, the numerical study of such problems has previously
not been undertaken. Hence that work partially fills that gap. A comprehensive analysis containing
existence theory, and stability analysis will be established. To that end, we will use tools of nonlinear
analysis.

Stability theory in mathematics deals with the stability of dynamical system trajectories and
solutions to differential equations under slight changes in initial circumstances. In the investigation
of dynamical systems, stability means that the trajectories do not change too much under small
perturbations. Stability is also an important consequence from a numerical and optimization point
of view. Stability theory can be established by using various concepts like Lyapunov stability, Mittag-
Leffler stability, exponential stability, UH stability. In this article, we study Hyers Ulam stability for
our considered problem. During a talk in 1940, Ulam posed a question on the stability of group
homomorphisms which then served as the inspiration for the stability problem of functional equations.
In the setting of Banach spaces and additive mappings, Hyers provided a partial affirmative response
to Ulam’s query. This was a major first step towards additional solutions in this field [27]. Later
on, the concept was explored by Rassias for various problems of functional analysis (see [28]). The
aforementioned concept has been extensively investigated for various problems of fractional order
differential equations. Here, we refer to [29–31]. Recently researchers have studied the mentioned
aspects for some applicable problems in [32] and [33]. Also, stability due to Hyers and Ulam has been
attracted the attention of researchers working in the area of mathematical models. It has also been
studied in relation to dynamical problems as well, for instance see [34] and [35] respectively.

Additionally, mathematical models with nonlocal operators of differentiations and integrations have
also been studied. The mentioned operators have the ability to capture the crossover dynamics of real-
word phenomena more efficiently. Here, for interesting applications, we refer to [36]. Computing the
exact or analytical solution to nonlinear problems with fractional order derivatives is a quiet difficult
task. Therefore, researchers usually use various numerical methods. For instance, authors [37] have
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applied a randomized Euler scheme to find the numerical solutions for irregular delay problems of
ordinary differential equations. In the same way, authors [38] studied the existence, uniqueness, and
approximation of solutions to Carathéodory delay differential equations. A survey was conducted
on the numerical solution of fractional differential equations (see [39]). In addition, authors [40]
presented numerical methods for delay differential equations. Also numerical results for the area
devoted to nonsingular type differential operators is curial importance for researchers, and significant
contribution has been done (see [41]). Keeping all the mentioned points in mind, we will investigate
the qualitative theory of existence uniqueness, stability analysis and numerical investigations for the
considered problem. To make our results applicable and novel, the results are testified by the famous
house houseflies model and a Cauchy type dynamical problem. The concerned problems are special
examples of the famous logistic equations which has numerous applications in ecology as well as in
biological and physical disciplines.

2. Preliminaries

Let, J = [0,T], and Ω = C(J,R). Then, for any U ∈ Ω the supremum norm ∥ · ∥ on Ω is defined as
follows

∥U∥ = sup
z∈J
|U(z)|.

Thus, Ω is a Banach space with the above norm defined on it.

Definition 2.1. [19] For, δ ∈ (0, 1], the CFFD of U(z) ∈ Ω can be described as

CFDδ0+U(z) =
M(δ)

(1 − δ)

∫ z

0
exp(−

δ

1 − δ
(z − ξ)δ−1)U′(ξ)dξ, (2.1)

where, M(δ) is a normalization function.

Definition 2.2. [19] For, δ ∈ (0, 1] the Caputo-Fabrizio fractional integral for U(z) ∈ Ω can be
described as

CFIδ0+U(z) =
1 − δ
M(δ)

U(z) +
δ

M(δ)

∫ z

0
U(ξ)dξ. (2.2)

Lemma 2.3. [20] Let x ∈ L(J) , where x→ 0 at z→ 0, the solution of

CFDδ0+U(z) = x(z), with δ ∈ (0, 1],
U(0) = U0

is given by

U(z) = U0 +
1 − δ
M(δ)

x(z) +
δ

M(δ)

∫ z

0
x(ξ)dξ.

3. Existence theory

In this part of our manuscript, we are going to study the problem (1.1) for existence theory.
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Lemma 3.1. Let Φ ∈ C(J × R3). Then, the solution of problem
CFDδ0+U(z) = Φ(z,U(z),U(λz),U(z − τ)), z ∈ J,
U(0) = U0 + Ψ(U),
U(z) = Φ(z), z ∈ [−τ, 0),

(3.1)

is given by

U(z) =


U0 + Ψ(U) +

1 − δ
M(δ)

Φ(z,U(z),U(λz),U(z − τ))

+
δ

M(δ)

∫ z

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ, z ∈ J.

(3.2)

Proof. Using Lemma 2.3, we have

U(z) =


U0 + Ψ(U) +

1 − δ
M(δ)

Φ(z,U(z),U(λz),U(z − τ))

+
δ

M(δ)

∫ z

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ, z ∈ J.

(3.3)

□

To demonstrate the existence of solutions to problem (1.1). Let Ω be the space of continuous
function, define operator Z : Ω→ Ω by:

ZU(z) =


U0 + Ψ(U) +

1 − δ
M(δ)

Φ(z,U(z),U(λz),U(z − τ))

+
δ

M(δ)

∫ z

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ, z ∈ J.

(3.4)

Divide the above operator (3.4) into two sub operators as follows:

Z1U(z) = U0 + Ψ(U) +
1 − δ
M(δ)

Φ(z,U(z),U(λz),U(z − τ)), (3.5)

and
Z2U(z) =

δ

M(δ)

∫ z

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ. (3.6)

From Eqs (3.5) and (3.6), Z(U) can be written as:

Z(U) = Z1(U) + Z2(U). (3.7)

For further analysis, we need the following assumptions:

(A1) For continuous function Ψ(U), and G > 0,

|Ψ(U) − Ψ(V)| ≤ G|U − V|.

(A2) For continuous Φ(z,U,V,w) andD1 > 0,D2 > 0,D3, andD4,

|Φ(z,U,V,w)| ≤ D1|U| +D2|V| +D3|w| +D4.
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(A3) For C1, C2, C3 > 0,

|Φ(z,U,V,w) − Φ(z, Û, V̂, ŵ)| ≤ C1|U − Û| + C2|V − V̂| + C3|w − ŵ|.

Theorem 3.2. Under the assumptions (A2,A3), and if

Π =

(
G +

1 − δ
M(δ)

[C1 + C2 + C3]
)
< 1

holds, then the proposed problem has at least one solution .

Proof. Step1 : We need to show that the operator Z1 is a contraction.
Let D = {U ∈ B : ∥U∥ ≤ r} ⊂ B be the closed, convex, and bounded subset. Then, obviously Z1 is

continuous. Let U,V ∈ D , consider

∥Z1(U) − Z1(V)∥ = sup
z∈J

{∣∣∣∣∣U0 + Ψ(U) +
(1 − δ)Φ(z,U(z),U(λz),U(z − τ))

M(δ)

−

(
U0 + Ψ(V) +

(1 − δ)Φ(z,V(z),V(λz),V(z − τ))
M(δ)

) ∣∣∣∣∣}
≤ sup

z∈J
|Ψ(U) − Ψ(V)| +

1 − δ
M(δ)

sup
z∈J

{
|Φ(z,U(z),U(λz),U(z − τ))

−Φ(z,V(z),V(λz),V(z − τ))|
}

≤ G∥U − V∥ +
1 − δ
M(δ)

sup
z∈J

[C1|U(z) − V(z)| + C2|U(λz) − V(λz)|

+C3|U(z − τ) − V(z − τ)|]

≤

(
G +

1 − δ
M(δ)

[C1 + C2 + C3]
)
∥U − V∥

≤ Π∥U − V∥.

Hence, Z1 is a contraction.
Step2 : Next, to show that Z2 is equi-continuous, take U ∈ D and consider

∥Z2(U)∥ = sup
z∈J

∣∣∣∣∣ δM(δ)

∫ z

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ

∣∣∣∣∣
≤

(
δT

M(δ)

)
[D1 +D2 +D3]r

< ∞.

Thus, Z2(U) is bounded. As Φ is continuous, and therefore, Z2(U) is also continuous. Further, let
z1 < z2 ∈ J. Then

∥Z2U(z2) − Z2U(z1)∥ = sup
z1,z2∈J

{∣∣∣∣∣ δM(δ)

∫ z2

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ

−
δ

M(δ)

∫ z1

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ

∣∣∣∣∣}
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≤
δ[D1 +D2 +D3]r

M(δ)

( ∫ z2

0
dξ −

∫ z1

0
dξ

)
≤
δ[D1 +D2 +D3]r

M(δ)
(z2 − z1)→ 0, as z1 → z2.

Thus, Z2 is equi-continuous, and bounded. Hence, in view of Arzelá-Ascoli and Schauder fixed point
theorems, problem (1.1) has at least one solution . □

Theorem 3.3. Under assumptions (A1), (A3), and if the condition

Λ =

[
G +

(C1 + C2 + C3)
M(δ)

(1 − δ[1 − T])
]
< 1

holds, then the problem (1.1) has a unique solution.

Proof. Let U, Û ∈ Ω, and consider

∥Z(U) − Z(Û)∥ = sup
z∈[0,T]

{(∣∣∣∣∣U0 + Ψ(U) +
(1 − δ)Φ(z,U(z),U(λz),U(z − τ))

M(δ)

+
δ

M(δ)

∫ z

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ

)
−

(
U0 + Ψ(Û) +

(1 − δ)Φ(z, Û(z), Û(λz), Û(z − τ))
M(δ)

+
δ

M(δ)

∫ z

0
Φ(ξ, Û(ξ), Û(λξ), Û(ξ − τ))dξ

)∣∣∣∣∣}
≤ sup

z∈J

{
|Ψ(U) − Ψ(Û)| +

1 − δ
M(δ)

∣∣∣∣∣Φ(z,U(z),U(λz),U(z − τ))

− Φ(z, Û(z), Û(λz), Û(z − τ))
∣∣∣∣∣

+
δ

M(δ)

∫ z

0

∣∣∣∣∣Φ(ξ,U(ξ),U(λξ),U(ξ − τ))

− Φ(ξ, Û(ξ), Û(λξ), Û(ξ − τ))
∣∣∣∣∣dξ}

≤ sup
z∈J

{
G|U(z) − Û(z)| +

1 − δ
M(δ)

[C1|U(z) − Û(z)| + C2|U(λz) − Û(λz)|

+ C3|U(z − τ) − Û(z − τ)|] +
δ

M(δ)

∫ z

0
[C1|U(z) − Û(z)|

+ C2|U(λz) − Û(λz)| + C3|U(z − τ) − Û(z − τ)|]dξ
}
,

which further yields that

∥Z(U) − Z(Û)∥ ≤ sup
z∈J
G|U(z) − Û(z)| + sup

z∈J

{1 − δ
M(δ)

[C1|U(z) − Û(z)| + C2|U(z) − Û(z)|

+ C3|U(z) − Û(z)|] +
δ

M(δ)

∫ z

0
[C1|U(z) − Û(z)|

+ C2|U(z) − Ûz)| + C3|U(z) − Û(z)|]dξ
}
.
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Hence, we have

∥Z(U) − Z(Û)∥ ≤
[
G +

(C1 + C2 + C3)
M(δ)

(1 − δ[1 − T])
]
∥U − Û∥

≤ Λ∥U − Û∥.

In view of Banach contraction theorem, Z is a contraction operator, and therefore has a unique fixed
point. Therefore, problem (1.1) has a unique solution. □

Remark 3.1. It is remarkable that all Lipschitz continuous functions on a bounded set are also Hölder
continuous. Therefore, If in (A3) instead of Lipschitz continuity we consider Hölder continuity, the
results of Theorems 3.2, and 3.3 also hold.

4. Stability analysis

This section is devoted to establishing stability results for the considered problem. We contend that
the UH stability idea is important for practical issues in economics, biology, and numerical analysis.
The interesting feature of stability is that researching a UH stable system does not require reaching the
exact solution, which is typically challenging or time-consuming. According to UH stability, there is
a close approximate solution to exact solution of the problem. Because in many mathematical models
of economics, biological and physical problems which are nonlinear and we do not know the exact
solution, therefore, we need to find best approximate or numerical solution. For more details theory,
and applications of UH stability analysis, we refer to [27], [29], and [30].

Consider the problem
CF

0D
δ
zU(z) = Φ(z,U(z),U(λz),U(z − τ)) + h(z), z ∈ J,

U(0) = U0 + Ψ(U),
U(z) = Φ(z), z ∈ [−τ, 0).

(4.1)

Here, h ∈ Ω such that for ϵ > 0, |h(z)| ≤ ϵ. Then, Eq (4.1) has the solution

U(z) =


U0 + Ψ(U) +

(1 − δ)[Φ(z,U(z),U(λz),U(z − τ)) + h(z)]
M(δ)

+ δ

∫ z

0

[Φ(ξ,U(ξ),U(λξ),U(ξ − τ)) + h(ξ)]
M(δ)

dξ, z ∈ J.
(4.2)

In operator form using Theorem 3.3, Eq (4.2) can be shortened to

Z(U(z)) = U(z) + h(z), z ∈ J. (4.3)

From Eq (4.2), one has using Eq (4.1)

|Z(U(z)) − U(z)| ≤
[
1 − δ(1 − T )

M(δ)

]
ϵ

≤ Πϵ,

where, Π = 1−δ(1−T )
M(δ) .
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Theorem 4.1. Equation (3.1) is UH and generalized UH stable if

Λ =

[
G +

(C1 + C2 + C3)
M(δ)

(1 − δ[1 − T])
]
< 1

holds.

Proof. Let Û, U ∈ Ω represent any and unique solution respectively of Eq (3.1). Then,

∥U − Û∥ = sup z ∈ J|U(z − Z(Û(z))|

≤ sup z ∈ J|U(z) − Z(U(z))| + sup z ∈ J|Z(U(z)) − Z(Û(z))|

≤Πϵ + Λ∥U − Û∥

≤
Πϵ

1 − Λ
.

(4.4)

Therefore, Eq (3.1) is UH and generalized UH stable. Similarly, we can deduce other kinds of UH
stability in the same way. □

5. Numerical approximation

Usually to find an analytical or exact solution for nonlinear problems with fractional order derivative
is a difficult job. Therefore, we need some sophisticated numerical tools to compute the approximate
solutions for the problem under consideration. Since, problem (1.1) is nonlinear and its analytical or
exact solution is difficult to compute, we establish a numerical algorithm to compute the approximate
solution. Following the numerical method [41], a numerical scheme is established based on the
interpolation process. The equivalent integral form of Eq (1.1) is given by

U(z) = U0 + Ψ(U) +
1 − δ
M(δ)

Φ(z,U(z),U(λz),U(z − τ))

+
δ

M(δ)

∫ z

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ. (5.1)

At z = zm+1, Eq (5.1) can be written as

U(zm+1) = U0 + Ψ(Um) +
1 − δ
M(δ)

Φ(zm,U(zm),U(λzm),U(zm − τ))

+
δ

M(δ)

∫ zm+1

0
Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ

= U0 + Ψ(Um) +
1 − δ
M(δ)

Φ(zm,U(zm),U(λzm),U(zm − τ))

+
δ

M(δ)

m+1∑
j=0

∫ z j+1

z j

Φ(ξ,U(ξ),U(λξ),U(ξ − τ))dξ. (5.2)

Now, using interpolation with equally spaced arguments and approximating the function

Φ(ξ,U(ξ),U(λξ),U(ξ − τ))
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in terms of Lagrange polynomials, one has

Φ(ξ,U(ξ),U(λξ),U(ξ − τ)) =
Φ(z j,U(z j),U(λz j),U(z j − τ))

h
(ξ − t j−1) (5.3)

−
Φ(z j−1,U(z j−1),U(λz j−1),U(z j−1 − τ))

h
(ξ − t j).

Putting Eq (5.3) in Eq (5.2), we have

U(zm+1) = U0 + Ψ(Um) +
1 − δ
M(δ)

Φ(zm,U(zm),U(λzm),U(zm − τ))

+
δ

M(δ)

m+1∑
j=0

∫ z j+1

z j

[Φ(z j,U(z j),U(λz j),U(z j − τ))
h

(ξ − t j−1)

−
Φ(z j−1,U(z j−1),U(λz j−1),U(z j−1 − τ))

h
(ξ − t j)

]
dξ

= U0 + Ψ(Um) +
1 − δ
M(δ)

Φ(zm,U(zm),U(λzm),U(zm − τ))

+
δ

M(δ)h

m+1∑
j=0

[
Φ(z j,U(z j),U(λz j),U(z j − τ))

∫ z j+1

z j

∫ z j+1

z j

(ξ − t j−1)dξ

−Φ(z j−1,U(z j−1),U(λz j−1),U(z j−1 − τ))
∫ z j+1

z j

(ξ − t j)dξ
]

= U0 + Ψ(Um) +
1 − δ
M(δ)

Φ(zm,U(zm),U(λzm),U(zm − τ))

+
3δh

2M(δ)
Φ(zm,U(zm),U(λzm),U(zm − τ)) −

δh
2M(δ)

Φ(zm−1,U(zm−1),U(λzm−1),U(zm−1 − τ))

= U0 + Ψ(Um) +
[1 − δ

M(δ)
+

3hδ
2M(δ)

]
Φ(zm,U(zm),U(λzm),U(zm − τ))

−

[1 − δ
M(δ)

+
hδ

2M(δ)

]
Φ(zm−1,U(zm−1),U(λzm−1),U(zm−1 − τ))

]
. (5.4)

The formula (5.4) will be utilized to simulate our results.

6. Example

Example 6.1. Consider a Cauchy type problem with nonlocal initial condition as
CFDδ0+U(z) =

z2

102 +
1

60
cos(|U(z)|) +

sin(|U(0.5z)|)
60

+
1

60
U(z − 0.5),

U(0) = 1 +
sin |U|

20
,

U(z) = 0, z ∈ [−0.5, 0).

(6.1)

Here, z ∈ [0, 1] = J, Φ(z,U(z),U(0.5z),U(z − 0.5)) = z2

102 +
1
60 cos(|U(z)|) + sin(|U(λz)|)

60 + 1
60U(z − 0.5),

and Ψ(U) = U(z)
20 . Now,
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|Φ(z,U(z),U(λz),U(z − τ)) − Φ(z, Û(z), Û(λz), Û(z − 0.5))|

≤
1

60

∣∣∣∣U − Û
∣∣∣∣ + 1

60

∣∣∣∣U − Û
∣∣∣∣ + 1

60

∣∣∣∣U − Û
∣∣∣∣

=
1

20

∣∣∣∣U − Û
∣∣∣∣ .

∥Φ(U)∥ = sup
z∈J

{∣∣∣∣∣ z2

102 +
1

60
cos(|U(z)|) +

sin(|U(λz)|)
60

+
1

60
U(z − 0.5)

∣∣∣∣∣}
≤ sup

z∈J

{
z2

102 +
1

60
|U(z)| +

1
60
|U(λz)| +

1
60
|U(z − 0.5)|

}
≤

1
20
∥U∥ +

1
100
.

Hence, Ψ satisfies assumption (A1) with G = 1
20 and also satisfies assumptions (A2,A3) with constants

D1 =
1

60 = C1,D2 =
1
60 = C2,D3 =

1
60 = C3, andD4 =

1
100 . Further, let M(δ) = 1 − δ(1 − 1

Γ(δ+1) )

Π =

(
G +

1 − δ
M(δ)

[C1 + C2 + C3]
)

≤

(
1

60
+

0.5
M(0.5)

[
1
60
+

1
60
+

1
60

]
)
, ∀ δ ∈ (0, 1]

= 0.016267
< 1,

and

Λ =

[
G +

(C1 + C2 + C3)
M(δ)

(1 − δ[1 − T])
]

≤

[ 1
20
+

(
1

25 +
1

10 +
1

10

)
M(0.5)

(1 − 0)
]
, ∀ δ ∈ (0, 1]

= 0.027535
< 1.

Hence, all the conditions of Theorems 3.2, 3.3, and 4.1 hold. So, Eq (6.1) has at least unique solution
and is UH type stable on [0, 1].

Next, applying the scheme (5.4) to approximate the solution of problem Eq (6.1). In Figures 1 and 2,
we present the approximate solution for the problem (6.1) using different fractional orders with step
size h = 0.05.
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Figure 1. Numerical solutions at different fractional order for Eq (6.1).
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Figure 2. Numerical solutions at different fractional order for Eq (6.1).

Next, we take h = 0.0003 and present the numerical solutions for the above example using different
fractional orders in Figure 3.
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Figure 3. Numerical solutions at different fractional order for Eq (6.1).

We have graphically interpreted, the numerical solutions against various fractional orders using
two step size.

Example 6.2. Consider a houseflies model [26] with discrete and proportional delays
CFDδ0+U(z) = −dU(z) + bU(λz)

[
κ − bµU(z − τ)

]
, z ∈ [0, 1],

U(0) = 1,
U(z) = 0, z ∈ [−0.5, 0),

(6.2)

where d = 0.147 represents death rate of adults, b = 1.81 denoted number of eggs laid par adult, and
κ = 0.05107 shows the highest rate of egg-adult survival. Also, τ = 5 stands for the duration of the
adult developmental stage between oviposition and eclosion, and λ = 0.5 denotes probational delay.
In addition, µ = 0.000226 represents decrease rate in survival brought about by every extra egg. If we
consider λ = 1, τ = 0, then (6.2) becomes famous logistic equation which have widely been studied.
Here, U0 = 1 and Ψ(U) = 0. Here, we can deduce the assumptions for

Φ(z,U(z),U(λz),U(z − τ)) = −0.147U(z) + 1.81U(0.5z) [0.05107 − 1.81 × 0.000226U(z − 0.5)]

as

|Φ(z,U(z),U(λz),U(z − 0.5)) − Φ(z, Û(z), Û(0.5z), Û(z − 0.5))| ≤ 0.23945
∣∣∣∣U − Û

∣∣∣∣ .
∥Φ(U)∥ = sup

z∈J

{∣∣∣∣∣Φ(z,U(z),U(0.5z),U(z − 0.5))
∣∣∣∣∣},

≤ sup
z∈[0,1]

{
0.147|U(z)| + 1.81 × 0.05107|U(0.5z)| + (1.81)2 × 0.000226|U(0.5z)||U(z − 0.5)|

}
,

≤ 0.2401770986∥U∥.
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Hence Ψ satisfies assumption (A1) with G = 0 and also satisfies assumptions (A2,A3) with constants
D1 = d, D2 = bκ = C2,D3 = b2µ = C3 andD4 = 0. Further, let M(δ) = 1 − δ(1 − 1

Γ(δ+1) ). Then

Π =

(
G +

1 − δ
M(δ)

[C1 + C2 + C3]
)
= 0.2401770986 < 1.

In the same way, we can computeΛ = 0.13456 < 1. Hence, the said model has a unique solution. Also,
existence of at least one solution is obvious. Moreover, Π < 1, conditions of UH, and generalized UH
stability also hold. Next, in Figures 4–6, we present the results graphically using various fractional
orders with step size h = 0.005
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Figure 4. Numerical solutions at different fractional order for Eq (6.2).
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Figure 5. Numerical solutions at different fractional order for Eq (6.2).
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Next, we take h = 0.0003 and present the numerical solutions for the above example using different
fractional orders in Figure 6.
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Figure 6. Numerical solutions at different fractional order for Eq (6.2).

From Figures 4–6, we observe that fractional orders and step size have great impact on the evolution
of curves. Also, both have significant impact on the convergence behavior of the dynamical problems
physically. In Figure 7, we compared the numerical solution by using the Euler method and Adam
Bashforth method with the classical and fractional order solutions. We see that at fractional order
solution the graphs are closely agreed of both methods. Here, we have considered step size h = 0.01
for both methods. Here, the Euler method is used in standard Caputo sense for the Eq (6.2), and the
proposed method in sense of Caputo Fabrizio.

z

0 0.2 0.4 0.6 0.8 1

U

0

0.2

0.4

0.6

0.8

1
Euler method
Proposed Method

Figure 7. Comparison of approximate solutions at fractional order 0.29 using Euler and
proposed method for Eq (6.2).
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7. Conclusions

For existence theory and Ulam type stability, we thoroughly investigated a generalized fractional
differential equation within the context of this study. Regarding the suggested model, both proportional
and discrete delay terms have been investigated. The problem has also been analyzed for approximate
solution using a numerical scheme based on the Lagrange interpolation method. In the end, two
applicable concrete examples were testified by using the established analysis and computation to
support the conclusions. The first example was devoted to the Cauchy problem and the second example
was the famous houseflies model. We have compared the approximate solution using the Euler and
proposed method. In the future, two delays will be used to investigate other infectious diseases model.
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33. A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical
solutions of fractional order HIV/AIDS model, Chaos Solitons Fractals, 122 (2019), 119–128.
https://doi.org/10.1016/j.chaos.2019.03.022

34. Y. A. R. Awad, I. H. Kaddoura, On the Ulam-Hyers-Rassias stability for a boundary value problem
of implicitΨ-Caputo fractional integro-differential equation, TWMS J. Appl. Eng. Math., 14 (2024),
79–93. https://orcid.org/0000-0001-9878-2482

35. M. Alam, A. Zada, T. Abdeljawad, Stability analysis of an implicit fractional integro-
differential equation via integral boundary conditions, Alex. Eng. J., 87 (2024), 501–514.
https://doi.org/10.1016/j.aej.2023.12.055

36. M. Berardi, G. Girardi, Modeling plant water deficit by a non-local root water uptake term
in the unsaturated flow equation, Commun. Nonl. Sci. Numer. Simul., 128 (2024), 107583.
https://doi.org/10.1016/j.cnsns.2023.107583

AIMS Mathematics Volume 9, Issue 3, 7321–7339.

http://dx.doi.org/https://doi.org/10.1007/978-1-4419-7646-8_7
http://dx.doi.org/https://doi.org/10.1016/S0252-9602(13)60032-6
http://dx.doi.org/https://doi.org/10.1016/S0252-9602(13)60032-6
http://dx.doi.org/https://doi.org/10.1002/mma.6390
http://dx.doi.org/https://doi.org/10.1007/1-4020-3647-7_11
http://dx.doi.org/https://doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/https://doi.org/10.2307/2042795
http://dx.doi.org/https://doi.org/10.1016/j.rico.2023.100347
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.114356
http://dx.doi.org/https://doi.org/10.1016/j.aej.2023.12.036
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.113901
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2019.03.022
http://dx.doi.org/https://orcid.org/0000-0001-9878-2482
http://dx.doi.org/https://doi.org/10.1016/j.aej.2023.12.055
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2023.107583


7339

37. P. Przybylowicz, Y. Wu, X. Xie, On approximation of solutions of stochastic delay
differential equations via randomized Euler scheme, Appl. Numer. Math., 197 (2024), 143–163.
https://doi.org/10.1016/j.apnum.2023.11.008

38. F. V. Difonzo, P. Przybylowicz, Y. Wu, Existence, uniqueness and approximation of solutions
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