This paper discusses the existence, uniqueness and stability of solutions for a nonlinear fractional differential system consisting of a nonlinear Caputo-Hadamard fractional initial value problem (FIVP). By using some properties of the modified Laplace transform, we derive an equivalent Hadamard integral equation with respect to one-parametric and two-parametric Mittag-Leffer functions. The Banach contraction principle is used to give the existence of the corresponding solution and its uniqueness. Then, based on a Lyapunov-like function and a $ \mathcal{K} $-class function, the generalized Mittag-Leffler stability is discussed to solve a nonlinear Caputo-Hadamard FIVP. The findings are validated by giving an example.
Citation: Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour. Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method[J]. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794
This paper discusses the existence, uniqueness and stability of solutions for a nonlinear fractional differential system consisting of a nonlinear Caputo-Hadamard fractional initial value problem (FIVP). By using some properties of the modified Laplace transform, we derive an equivalent Hadamard integral equation with respect to one-parametric and two-parametric Mittag-Leffer functions. The Banach contraction principle is used to give the existence of the corresponding solution and its uniqueness. Then, based on a Lyapunov-like function and a $ \mathcal{K} $-class function, the generalized Mittag-Leffler stability is discussed to solve a nonlinear Caputo-Hadamard FIVP. The findings are validated by giving an example.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics Studies, 2006. |
[2] | V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, Springer, Higher Education Press, 2011. |
[3] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, Singapore: World Scientific Publishing Company, 2016. https://doi.org/10.1142/10238 |
[4] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0 |
[5] | D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. https://doi.org/10.1016/j.aej.2020.04.053 doi: 10.1016/j.aej.2020.04.053 |
[6] | A. Aphithana, S. K. Ntouyas, J. Tariboon, Existence and Ulam-Hyers stability for Caputo conformable differential equations with four-point integral conditions, Adv. Differ. Equ., 2019 (2019), 139. https://doi.org/10.1186/s13662-019-2077-5 doi: 10.1186/s13662-019-2077-5 |
[7] | S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. https://doi.org/10.3906/mat-2010-70 doi: 10.3906/mat-2010-70 |
[8] | S. Rezapour, S. K. Ntouyas, M. Q. Iqbal, A. Hussain, S. Etemad, J. Tariboon, An analytical survey on the solutions of the generalized double-order $\varphi$-integrodifferential equation, J. Funct. Spaces, 2021 (2021), 6667757. https://doi.org/10.1155/2021/6667757 doi: 10.1155/2021/6667757 |
[9] | S. P. Bhairat, D. B. Dhaigude, Existence of solutions of generalized fractional differential equation with nonlocal initial condition, Math. Bohemica, 144 (2019), 203–220. https://doi.org/10.21136/MB.2018.0135-17 doi: 10.21136/MB.2018.0135-17 |
[10] | M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9 |
[11] | S. Rezapour, A. Imran, A. Hussain, F. Martinez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. https://doi.org/10.3390/sym13030469 doi: 10.3390/sym13030469 |
[12] | M. E. Samei, A. Ahmadi, S. N. Hajiseyedazizi, S. K. Mishra, B. Ram, The existence of nonnegative solutions for a nonlinear fractional $q$-differential problem via a different numerical approach, J. Inequal. Appl., 2021 (2021), 75. https://doi.org/10.1186/s13660-021-02612-z doi: 10.1186/s13660-021-02612-z |
[13] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos, Solitons Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[14] | M. I. Abbas, On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations, Asian-Eur. J. Math., 14 (2021), 2150073. https://doi.org/10.1142/S179355712150073X doi: 10.1142/S179355712150073X |
[15] | M. ur Rahman, M. Arfan, Z. Shah, E. Alzahrani, Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives, Phys. Scripta, 96 (2021), 115203. https://doi.org/10.1088/1402-4896/ac1218 doi: 10.1088/1402-4896/ac1218 |
[16] | M. ur Rahman, S. Ahmad, M. Arfan, A. Akgul, F. Jarad, Fractional order mathematical model of serial killing with different choices of control strategy, Fractal Fract., 6 (2022), 162. https://doi.org/10.3390/fractalfract6030162 doi: 10.3390/fractalfract6030162 |
[17] | H. Qu, M. ur Rahman, M. Arfan, M. Salimi, S. Salahshour, A. Ahmadian, Fractal-fractional dynamical system of Typhoid disease including protection from infection, Eng. Comput., 2021. https://doi.org/10.1007/s00366-021-01536-y |
[18] | X. Liu, M. Arfan, M. ur Rahman, B. Fatima, Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator, Comput. Methods Biomech. Biomed. Eng., 2022. https://doi.org/10.1080/10255842.2022.2047954 |
[19] | B. Ahmad, S. K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal., 2014 (2014), 705809. https://doi.org/10.1155/2014/705809 doi: 10.1155/2014/705809 |
[20] | B. Ahmad, S. K. Ntouyas, J. Tariboon, Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions, Adv. Differ. Equ., 2015 (2015), 293. https://doi.org/10.1186/s13662-015-0625-1 doi: 10.1186/s13662-015-0625-1 |
[21] | K. Pei, G. Wang, Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 312 (2017), 158–168. https://doi.org/10.1016/j.amc.2017.05.056 doi: 10.1016/j.amc.2017.05.056 |
[22] | C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174 |
[23] | S. Belmor, F. Jarad, T. Abdeljawad, On Caputo-Hadamard type coupled systems of nonconvex fractional differential inclusions, Adv. Differ. Equ., 2021 (2021), 377. https://doi.org/10.1186/s13662-021-03534-2 doi: 10.1186/s13662-021-03534-2 |
[24] | S. Etemad, S. Rezapour, M. E. Samei, On a fractional Caputo-Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property, Math. Methods Appl. Sci., 43 (2020), 9719–9734. https://doi.org/10.1002/mma.6644 doi: 10.1002/mma.6644 |
[25] | D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2 (1996), 963–968. |
[26] | W. Deng, C. Li, Q. Guo, Analysis of fractional differential equations with multi-orders, Fractals, 15 (2007), 173–182. https://doi.org/10.1142/S0218348X07003472 doi: 10.1142/S0218348X07003472 |
[27] | W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48 (2007), 409–416. https://doi.org/10.1007/s11071-006-9094-0 doi: 10.1007/s11071-006-9094-0 |
[28] | A. Bayati Eshkaftaki, J. Alidousti, R. Khoshsiar Ghaziani, Stability analysis of fractional-order nonlinear systems via Lyapunov method, J. Mahani Math. Res. Center, 3 (2014), 61–73. |
[29] | L. G. Zhang, J. M. Li, G. P. Chen, Extension of Lyapunov second method by fractional calculus, Pure Appl. Math., 3 (2005), 1008–5513. |
[30] | H. Belbali, M. Benbachir, Existence results and Ulam-Hyers stability to impulsive coupled system fractional differential equations, Turk. J. Math., 45 (2021), 1368–1385. https://doi.org/10.3906/mat-2011-85 doi: 10.3906/mat-2011-85 |
[31] | A. K. Anatoly, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
[32] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142 |
[33] | C. Li, Z. Li, Asymptotic behaviours of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, Int. J. Comput. Math., 98 (2021), 305–339. https://doi.org/10.1080/00207160.2020.1744574 doi: 10.1080/00207160.2020.1744574 |
[34] | C. Li, Z. Li, Z. Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation, J. Sci. Comput., 85 (2020), 41. https://doi.org/10.1007/s10915-020-01353-3 doi: 10.1007/s10915-020-01353-3 |
[35] | H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), 298628. https://doi.org/10.1155/2011/298628 doi: 10.1155/2011/298628 |
[36] | I. Podlubny, Fractional differential equations, mathematics in science and engineering, San Diego, Calif, USA: Academic Press, 1999. |
[37] | V. Daftardar-Gejji, H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033. https://doi.org/10.1016/j.jmaa.2006.06.007 doi: 10.1016/j.jmaa.2006.06.007 |
[38] | D. R. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1974. |
[39] | S. J. Sadati, D. Baleanu, A. Ranjbar, R. Ghaderi, T. Abdeljawad, Mittag-Leffler stability theorem for fractional nonlinear systems with delay, Abstr. Appl. Anal., 2010 (2010), 108651. https://doi.org/10.1155/2010/108651 doi: 10.1155/2010/108651 |
[40] | K. Liu, J. R. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4 |
[41] | X. Li, S. Liu, W. Jiang, $q$-Mittag-Leffler stability and Lyapunov direct method for differential systems with $q$-fractional order, Adv. Differ. Equ., 2018 (2018), 78. https://doi.org/10.1186/s13662-018-1502-5 doi: 10.1186/s13662-018-1502-5 |
[42] | Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019 |
[43] | H. Belbali, M. Benbachir, Stability for coupled systems on networks with Caputo-Hadamard fractional derivative, J. Math. Model., 9 (2021), 107–118. https://doi.org/10.22124/JMM.2020.17303.1500 doi: 10.22124/JMM.2020.17303.1500 |