In this paper, exact wave propagation patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional nonlinear Schrödinger equation are studied. The topological structure of the dynamic system of the equation is studied by the complete discrimination system for the cubic polynomial method, in which the existence conditions of the soliton solutions and periodic solutions are obtained. Then, by the trial equation method, thirteen exact solutions are obtained, including solitary wave solutions, triangular function solutions, rational solutions and the elliptic function double periodic solutions, especially the elliptic function double periodic solutions. Finally, it is found that the system has chaotic behaviors when given the appropriate perturbations.
Citation: Ninghe Yang. Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE[J]. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508
In this paper, exact wave propagation patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional nonlinear Schrödinger equation are studied. The topological structure of the dynamic system of the equation is studied by the complete discrimination system for the cubic polynomial method, in which the existence conditions of the soliton solutions and periodic solutions are obtained. Then, by the trial equation method, thirteen exact solutions are obtained, including solitary wave solutions, triangular function solutions, rational solutions and the elliptic function double periodic solutions, especially the elliptic function double periodic solutions. Finally, it is found that the system has chaotic behaviors when given the appropriate perturbations.
[1] | J. Shang, W. Li, D. Li, Traveling wave solutions of a coupled Schrödinger-Korteweg-de Vries equation by the generalized coupled trial equation method, Heliyon, 9 (2023), e15695. http://dx.doi.org/10.1016/j.heliyon.2023.e15695 doi: 10.1016/j.heliyon.2023.e15695 |
[2] | B. Liu, Q. Zhao, X. Li, Step-like initial value problem and Whitham modulation in fluid dynamics to a generalized derivative nonlinear Schrödinger equation, Phys. Fluids, 36 (2024), 066109. http://dx.doi.org/10.1063/5.0210864 doi: 10.1063/5.0210864 |
[3] | S. Rizvi, A. Seadawy, N. Farah, S. Ahmad, Application of Hirota operators for controlling soliton interactions for Bose-Einstein condensate and quintic derivative nonlinear Schrödinger equation, Chaos Soliton. Fract., 159 (2022), 112128. http://dx.doi.org/10.1016/j.chaos.2022.112128 doi: 10.1016/j.chaos.2022.112128 |
[4] | N. Karjanto, Modeling wave packet dynamics and exploring applications: a comprehensive guide to the nonlinear Schrödinger equation, Mathematics, 12 (2024), 744. http://dx.doi.org/10.3390/math12050744 doi: 10.3390/math12050744 |
[5] | Y. Jiang, C. Wang, Exact solutions and dynamic properties of perturbed Fokas-Lenells equation, J. Opt., in press. http://dx.doi.org/10.1007/s12596-024-01823-z |
[6] | N. Raza, M. Osman, A. Abdel-Aty, S. Abdel-Khalek, H. Besbes, Optical solitons of space-time fractional Fokas-Lenells equation with two versatile integration architectures, Adv. Differ. Equ., 2020 (2020), 517. http://dx.doi.org/10.1186/s13662-020-02973-7 doi: 10.1186/s13662-020-02973-7 |
[7] | A. Arnous, A. Elsherbeny, A. Secer, M. Ozisik, M. Bayram, N. Shah, et al., Optical solitons for the dispersive concatenation model with spatio-temporal dispersion having multiplicative white noise, Results Phys., 56 (2024), 107299. http://dx.doi.org/10.1016/j.rinp.2023.107299 doi: 10.1016/j.rinp.2023.107299 |
[8] | W. Rabie, H. Ahmed, M. Hashemi, M. Mirzazadeh, M. Bayram, Generating optical solitons in the extended (3+1)-dimensional nonlinear Kudryashov's equation using the extended F-expansion method, Opt. Quant. Electron., 56 (2024), 894. http://dx.doi.org/10.1007/s11082-024-06787-9 doi: 10.1007/s11082-024-06787-9 |
[9] | Y. Zhang, X. Lü, Data-driven solutions and parameter discovery of the extended higher-order nonlinear Schrödinger equation in optical fibers, Physica D, 468 (2024), 134284. https://doi.org/10.1016/j.physd.2024.134284 doi: 10.1016/j.physd.2024.134284 |
[10] | Y. Li, Y. Kai, Wave structures and the chaotic behaviors of the cubic-quartic nonlinear Schrödinger equation for parabolic law in birefringent fibers, Nonlinear Dyn., 111 (2023), 8701–8712. http://dx.doi.org/10.1007/s11071-023-08291-3 doi: 10.1007/s11071-023-08291-3 |
[11] | H. Triki, F. Azzouzi, A. Biswas, S. Moshokoa, M. Belic, Bright optical solitons with Kerr law nonlinearity and fifth order dispersion, Optik, 128 (2017), 172–177. http://dx.doi.org/10.1016/j.ijleo.2016.10.026 doi: 10.1016/j.ijleo.2016.10.026 |
[12] | Y. Wu, M. Vivas-Cortez, H. Ur Rehman, E. Sherif, A. Rashid, Bifurcation study, phase portraits and optical solitons of dual-mode resonant nonlinear Schrödinger dynamical equation with Kerr law non-linearity, Heliyon, 10 (2024), e34416. http://dx.doi.org/10.1016/j.heliyon.2024.e34416 doi: 10.1016/j.heliyon.2024.e34416 |
[13] | P. Albayrak, M. Ozisik, A. Secer, M. Bayram, S. Das, Optical solitons of stochastic perturbed Radhakrishnan-Kundu-Lakshmanan model with Kerr law of self-phase-modulation, Mod. Phys. Lett. B, 38 (2024), 2450122. http://dx.doi.org/10.1142/S0217984924501227 doi: 10.1142/S0217984924501227 |
[14] | A. Biswas, M. Ekici, A. Dakova, S. Khan, S. Moshokoa, H. Alshehri, et al., Highly dispersive optical soliton perturbation with Kudryashov's sextic-power law nonlinear refractive index by semi-inverse variation, Results Phys., 27 (2021), 104539. http://dx.doi.org/10.1016/j.rinp.2021.104539 doi: 10.1016/j.rinp.2021.104539 |
[15] | K. Ahmed, N. Badra, H. Ahmed, W. Rabie, M. Mirzazadeh, M. Eslami, et al., Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method, Nonlinear Anal.-Model., 29 (2024), 205–223. http://dx.doi.org/10.15388/namc.2024.29.34070 doi: 10.15388/namc.2024.29.34070 |
[16] | N. Ozdemi, S. Altun, A. Secer, M. Ozisik, M. Bayram, Revealing optical soliton solutions of Schrödinger equation having parabolic law and anti-cubic law with weakly nonlocal nonlinearity, J. Taibah Univ. Sci., 18 (2024), 2270237. http://dx.doi.org/10.1080/16583655.2023.2270237 doi: 10.1080/16583655.2023.2270237 |
[17] | S. Arshed, G. Akram, M. Sadaf, A. Ul Nabi, A. Alzaidi, Optical soliton solutions of perturbed nonlinear Schrödinger equation with parabolic law nonlinearity, Opt. Quant. Electron., 56 (2024), 50. http://dx.doi.org/10.1007/s11082-023-05564-4 doi: 10.1007/s11082-023-05564-4 |
[18] | M. Aamir Ashraf, A. Seadawy, S. Rizvi, A. Althobaiti, Dynamical optical soliton solutions and behavior for the nonlinear Schrödinger equation with kudryashov's quintuple power law of refractive index together with the dual-form of nonlocal nonlinearity, Opt. Quant. Electron., 56 (2024), 1243. http://dx.doi.org/10.1007/s11082-024-07096-x doi: 10.1007/s11082-024-07096-x |
[19] | E. Zayed, K. Alurrfi, A. Arnous, M. Hashemi, M. Bayram, Effects of high dispersion and generalized non-local laws on optical soliton perturbations in magneto-optic waveguides with sextic-power law refractive index, Nonlinear Dyn., 112 (2024), 8507–8525. http://dx.doi.org/10.1007/s11071-024-09518-7 doi: 10.1007/s11071-024-09518-7 |
[20] | T. Han, Z. Li, K. Shi, G. Wu, Bifurcation and traveling wave solutions of stochastic Manakov model with multiplicative white noise in birefringent fibers, Chaos Soliton. Fract., 163 (2022), 112548. http://dx.doi.org/10.1016/j.chaos.2022.112548 doi: 10.1016/j.chaos.2022.112548 |
[21] | T. Han, Y. Jiang, J. Lyu, Chaotic behavior and optical soliton for the concatenated model arising in optical communication, Results Phys., 58 (2024), 107467. http://dx.doi.org/10.1016/j.rinp.2024.107467 doi: 10.1016/j.rinp.2024.107467 |
[22] | J. Zhang, Optical solitons in optical metamaterials with anti-cubic nonlinearity, Optik, 251 (2022), 168329. https://doi.org/10.1016/j.ijleo.2021.168329 doi: 10.1016/j.ijleo.2021.168329 |
[23] | L. Tang, Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks, Optik, 262 (2022), 169276. http://dx.doi.org/10.1016/j.ijleo.2022.169276 doi: 10.1016/j.ijleo.2022.169276 |
[24] | I. Samir, O. El-Sham, R. El-barkoki, H. Ahmed, W. Abbas, M. Hashemi, Extraction of solitons in optical fibers for the (2+1)-dimensional perturbed nonlinear Schrödinger equation via the improved modified extended tanh function technique, Contemp. Math., 5 (2024), 2397–2410. http://dx.doi.org/10.37256/cm.5220244301 doi: 10.37256/cm.5220244301 |
[25] | K. Ahmed, H. Ahmed, N. Badra, W. Rabie, Optical solitons retrieval for an extension of novel dual-mode of a dispersive non-linear Schrödinger equation, Optik, 307 (2024), 171835. http://dx.doi.org/10.1016/j.ijleo.2024.171835 doi: 10.1016/j.ijleo.2024.171835 |
[26] | H. Rehman, I. Iqbal, M. Medani, A. Awan, U. Perveen, R. Alroobaea, Analyzing the dynamics of multi-solitons and other solitons in the perturbed nonlinear Schrödinger equation, Mod. Phys. Lett. B, in press. http://dx.doi.org/10.1142/S0217984924504682 |
[27] | A. Farooq, M. Khan, W. Ma, Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method, Opt. Quant. Electron., 56 (2024), 542. http://dx.doi.org/10.1007/s11082-023-06258-7 doi: 10.1007/s11082-023-06258-7 |
[28] | A. Arnous, A. Biswas, Y. Yıldırım, Q. Zhou, W. Liu, A. Alshomrani, et al., Cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashov's method, Chaos Soliton. Fract., 155 (2022), 111748. http://dx.doi.org/10.1016/j.chaos.2021.111748 doi: 10.1016/j.chaos.2021.111748 |
[29] | A. Elsherbeny, M. Mirzazadeh, A. Arnous, A. Biswas, Y. Yıldırım, A. Asiri, Optical bullets and domain walls with cross-spatio dispersion having parabolic law of nonlinear refractive index, J. Opt., in press. http://dx.doi.org/10.1007/s12596-023-01398-1 |
[30] | A. Biswas, Theory of optical bullets, J. Opt. A, 4 (2002), 84–97. http://dx.doi.org/10.1163/156939302X01254 doi: 10.1163/156939302X01254 |
[31] | K. Hosseini, M. Matinfar, M. Mirzazadeh, A (3+1)-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions, Optik, 207 (2020), 164458. http://dx.doi.org/10.1016/j.ijleo.2020.164458 doi: 10.1016/j.ijleo.2020.164458 |
[32] | S. Kumar, A. Kukkar, Dynamics of several optical soliton solutions of a (3+1)-dimensional nonlinear Schrödinger equation with parabolic law in optical fibers, Mod. Phys. Lett. B, in press. http://dx.doi.org/10.1142/S0217984924504530 |
[33] | W. Rabie, H. Ahmed, I. Samir, M. Alnahhass, Optical solitons and stability analysis for NLSE with nonlocal nonlinearity, nonlinear chromatic dispersion and Kudryashov's generalized quintuple-power nonlinearity, Results Phys., 59 (2024), 107589. http://dx.doi.org/10.1016/j.rinp.2024.107589 doi: 10.1016/j.rinp.2024.107589 |
[34] | C. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun., 181 (2010), 317–324. http://dx.doi.org/10.1016/j.cpc.2009.10.006 doi: 10.1016/j.cpc.2009.10.006 |
[35] | C. Liu, Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics, Found. Phys., 41 (2011), 793–804. http://dx.doi.org/10.1007/s10701-010-9521-4 doi: 10.1007/s10701-010-9521-4 |
[36] | C. Liu, Canonical-like transformation method and exact solutions to a class of diffusion equations, Chaos Soliton. Fract., 42 (2009), 441–446. http://dx.doi.org/10.1016/j.chaos.2009.01.006 doi: 10.1016/j.chaos.2009.01.006 |
[37] | C. Liu, The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion, Chinese Phys., 16 (2007), 1832. http://dx.doi.org/10.1088/1009-1963/16/7/004 doi: 10.1088/1009-1963/16/7/004 |
[38] | Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. http://dx.doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6 |
[39] | Y. Kai, S. Chen, K. Zhang, Z. Yin, A study of the shallow water waves with some Boussinesq-type equations, Waves Random Complex, 34 (2024), 1251–1268. http://dx.doi.org/10.1080/17455030.2021.1933259 doi: 10.1080/17455030.2021.1933259 |
[40] | L. Guo, W. Xu, The traveling wave mode for nonlinear Biswas-Milovic equation in magneto-optical wave guide coupling system with Kudryashov's law of refractive index, Results Phys., 27 (2021), 104500. http://dx.doi.org/10.1016/j.rinp.2021.104500 doi: 10.1016/j.rinp.2021.104500 |
[41] | Y. Chen, Exact chirped solutions for the generalized nonlinear Schrödinger equation in highly-nonlinear optical fibers, Optik, 281 (2023), 170814. http://dx.doi.org/10.1016/j.ijleo.2023.170814 doi: 10.1016/j.ijleo.2023.170814 |
[42] | S. Li, Nonlinear chirped optical solitons of the perturbation Fokas-Lenells equation in optical fibers, Optik, 276 (2023), 170627. http://dx.doi.org/10.1016/j.ijleo.2023.170627 doi: 10.1016/j.ijleo.2023.170627 |
[43] | Y. Zhao, L. Guo, Optical wave solutions of the nonlinear Schrödinger equation with an anti-cubic nonlinear in presence of Hamiltonian perturbation terms, Optik, 274 (2023), 170593. http://dx.doi.org/10.1016/j.ijleo.2023.170593 doi: 10.1016/j.ijleo.2023.170593 |
[44] | Y. Li, Y. Kai, Chaotic behavior of the Zakharov-Kuznetsov equation with dual-power law and triple-power law nonlinearity, AppliedMath, 3 (2023), 1–9. http://dx.doi.org/10.3390/appliedmath3010001 doi: 10.3390/appliedmath3010001 |
[45] | Y. Kai, S. Chen, K. Zhang, Z. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2044541 |