Research article

Numerical solution for the system of Lane-Emden type equations using cubic B-spline method arising in engineering

  • Received: 12 February 2023 Revised: 09 April 2023 Accepted: 11 April 2023 Published: 20 April 2023
  • MSC : 34K32, 34K34

  • In this study, we develop a collocation method based on cubic B-spline functions for effectively solving the system of Lane-Emden type equations arising in physics, star structure, and astrophysics. To overcome the singularity behavior of the considered system at τ = 0, we apply the L'Hôpital rule. Furthermore, we have carried out a convergence analysis of the proposed method and have demonstrated that it has a second-order convergence. To demonstrate the effectiveness, accuracy, simplicity, and practicality of the method, five test problems are solved numerically and the maximum absolute errors of the proposed method are compared with those of some existing methods.

    Citation: Osama Ala'yed, Rania Saadeh, Ahmad Qazza. Numerical solution for the system of Lane-Emden type equations using cubic B-spline method arising in engineering[J]. AIMS Mathematics, 2023, 8(6): 14747-14766. doi: 10.3934/math.2023754

    Related Papers:

  • In this study, we develop a collocation method based on cubic B-spline functions for effectively solving the system of Lane-Emden type equations arising in physics, star structure, and astrophysics. To overcome the singularity behavior of the considered system at τ = 0, we apply the L'Hôpital rule. Furthermore, we have carried out a convergence analysis of the proposed method and have demonstrated that it has a second-order convergence. To demonstrate the effectiveness, accuracy, simplicity, and practicality of the method, five test problems are solved numerically and the maximum absolute errors of the proposed method are compared with those of some existing methods.



    加载中


    [1] K. Parand, A. Pirkhedri, Sinc-collocation method for solving astrophysics equations, New Astron., 15 (2010), 533–537. https://doi.org/10.1016/j.newast.2010.01.001 doi: 10.1016/j.newast.2010.01.001
    [2] R. Saadeh, M. Abu-Ghuwaleh, A. Qazza, E. Kuffi, A fundamental criteria to establish general formulas of integrals, J. Appl. Math., 2022 (2022), 6049367. https:/doi.org/10.1155/2022/6049367 doi: 10.1155/2022/6049367
    [3] R. Saadeh, O. Ala'yed, A. Qazza, Analytical solution of coupled Hirota-Satsuma and KdV equations, Fract. Fractional, 6 (2022), 694. https://doi.org/10.3390/fractalfract6120694 doi: 10.3390/fractalfract6120694
    [4] R. Saadeh, A. Qazza, K. Amawi, A new approach using integral transform to solve cancer models, Fract. Fractional, 6 (2022), 490. https://doi.org/10.3390/fractalfract6090490 doi: 10.3390/fractalfract6090490
    [5] E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Math., 8 (2023), 1713–1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
    [6] A. Qazza, R. Saadeh, E. Salah, Solving fractional partial differential equations via a new scheme, AIMS Math., 8 (2023), 5318–5337. https://doi.org/10.3934/math.2023267 doi: 10.3934/math.2023267
    [7] A. Qazza, R. Saadeh, On the analytical solution of fractional SIR epidemic model, Appl. Comput. Intell. Soft Comput., 2023 (2023), 6973734. https://doi.org/10.1155/2023/6973734 doi: 10.1155/2023/6973734
    [8] E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 111. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111
    [9] R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, Alexandria Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
    [10] A.Yıldırım, T. Özis, Solutions of singular IVPs of Lane-Emden type by the variational iteration method, Nonlinear Anal., 70 (2009), 2480–2484. https://doi.org/10.1016/j.na.2008.03.012 doi: 10.1016/j.na.2008.03.012
    [11] K. Parand, M. Dehghan, A. R. Rezaei, S. Ghaderi, An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method, Comput. Phys. Commun., 181 (2010), 1096–1108. https://doi.org/10.1016/j.cpc.2010.02.018 doi: 10.1016/j.cpc.2010.02.018
    [12] O. P. Singh, R. K. Pandey, V. K. Singh, An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified Homotopy analysis method, Comput. Phys. Commun., 180 (2009), 1116–1124. https://doi.org/10.1016/j.cpc.2009.01.012 doi: 10.1016/j.cpc.2009.01.012
    [13] R. Saadeh, A reliable algorithm for solving system of multi-pantograph equations, WSEAS Trans. Math., 21 (2022), 792–800. https://doi.org/10.37394/23206.2022.21.91 doi: 10.37394/23206.2022.21.91
    [14] R. K. Pandey, N. Kumar, A. Bhardwaj, G. Dutta, Solution of Lane-Emden type equations using Legendre operational matrix of differentiation, Appl. Math. Comput., 218 (2012), 7629–7637. https://doi.org/10.1016/j.amc.2012.01.032 doi: 10.1016/j.amc.2012.01.032
    [15] E. H. Doha, W. M. Abd-Elhameed, Y. H. Youssri, Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type, New Astron., 2324 (2013), 113–117. https://doi.org/10.1016/j.newast.2013.03.002 doi: 10.1016/j.newast.2013.03.002
    [16] Y. H. Youssri, W. M. Abd-Elhameed, E. H. Doha, Ultra-spherical wavelets method for solving Lane-Emden type equations, Rom. J. Phys., 60 (2015), 1298–1314.
    [17] W. M. Abd-Elhameed, Y. H. Youssri, E. H. Doha, A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations, Math. Sci., 9 (2015), 93–102. https://doi.org/10.1007/s40096-015-0155-8 doi: 10.1007/s40096-015-0155-8
    [18] B. M. Batiha, Numerical solution of a class of singular second-order IVPs by variational iteration method, Int. J. Math. Anal., 3 (2009), 1953–1968.
    [19] B. Gürbüz, M. Sezer, Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields, Acta Phys. Pol. A, 130 (2016), 194–197. https://doi.org/10.12693/APhysPolA.130.194 doi: 10.12693/APhysPolA.130.194
    [20] B. B. Arslan, B. Gürbüz, M. Sezer, A Taylor matrix collocation method based on residual error for solving Lane- Emden type differential equations, New Trends Math. Sci., 3 (2015), 219–224.
    [21] S. Chandrasekhar, An introduction to the study of stellar structure, University of Chicago Press, 1939.
    [22] S. K.Varani, A. Aminataei, On the numerical solution of differential equations of Lane-Emden type, Comput. Math. Appl., 59 (2010), 2815–2820. https://doi.org/10.1016/j.camwa.2010.01.052 doi: 10.1016/j.camwa.2010.01.052
    [23] I. Yıldırım, T. Özis, Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method, Phys. Lett. A, 369 (2007), 70–76. https://doi.org/10.1016/j.physleta.2007.04.072 doi: 10.1016/j.physleta.2007.04.072
    [24] A. M. Wazwaz, R. Rach, J. S. Duan, A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method, Math. Methods Appl. Sci., 37 (2014), 10–19. https://doi.org/10.1002/mma.2776 doi: 10.1002/mma.2776
    [25] R. K. Pandey, N. Kumar, Solution of Lane-Emden type equations using Berstein operational matrix of differentiation, New Astron., 17 (2012), 303–308. https://doi.org/10.1016/j.newast.2011.09.005 doi: 10.1016/j.newast.2011.09.005
    [26] D. Flockerzi, K. Sundmacher, On coupled Lane-Emden equations arising in dusty fluid models, J. Phys., 268 (2010), 012006. https://doi.org/10.1088/1742-6596/268/1/012006 doi: 10.1088/1742-6596/268/1/012006
    [27] Y. Öztürk, An efficient numerical algorithm for solving system of Lane-Emden type equations arising in engineering, Nonlinear Eng., 8 (2018), 429–437. https://doi.org/10.1515/nleng-2018-0062 doi: 10.1515/nleng-2018-0062
    [28] O. P. Singh, R. K. Pandey, V. K. Singh, An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified homotopy analysis method, Comput. Phys. Commun., 180 (2009), 1116–1124. https://doi.org/10.1016/j.cpc.2009.01.012 doi: 10.1016/j.cpc.2009.01.012
    [29] M. Al-Towaiq, O. Ala'yed, An efficient algorithm based on the cubic spline for the solution of Bratu-type equation, J. Interdiscip. Math., 17 (2014), 471–484. https://doi.org/10.1080/09720502.2013.842050 doi: 10.1080/09720502.2013.842050
    [30] O. Ala'yed, B. Batiha, R. Abdelrahim, A. A. Jawarneh, On the numerical solution of the nonlinear Bratu type equation via quintic B-spline method, J. Interdiscip. Math., 22 (2019), 405–413. https://doi.org/10.1080/09720502.2019.1624305 doi: 10.1080/09720502.2019.1624305
    [31] O. Ala'yed, T. Y. Ying, A. Saaban, Quintic spline method for solving linear and nonlinear boundary value problems, Sains Malays., 45 (2016), 1007–1012.
    [32] O. Ala'yed, T. Y. Ying, A. Saaban, New fourth order quartic spline method for solving second order boundary value problems, Mathematics, 2015 (2015), 149–157. https://doi.org/10.11113/MATEMATIKA.V31.N2.789 doi: 10.11113/MATEMATIKA.V31.N2.789
    [33] O. Ala'yed, Numerical treatment of general third order boundary value problems via B-spline method, MUAJ-EMJ 1st International Conference on Asian Studies Proceeding ICAS'2023, 2023.
    [34] O. Ala'yed, T. Y. Ying, A. Saaban, Numerical solution of first order initial value problem using quartic spline method, AIP Conf. Proc., 1691 (2015), 040003. https://doi.org/10.1063/1.4937053 doi: 10.1063/1.4937053
    [35] C. de Boor, A practical guide to splines, Springer Verlag, 1978.
    [36] D. Salomon, Curves and surfaces for computer graphics, Springer Verlag, 2006. https://doi.org/10.1007/0-387-28452-4
    [37] L. Shi, S. Tayebi, O. A. Arqub, M. S. Osman, P. Agarwal, W. Mahamoud, et al., The novel cubic B-spline method for fractional Painlevé and Bagley-Trovik equations in the Caputo, Caputo-Fabrizio, and conformable fractional sense, Alexandria Eng. J., 65 (2023), 413–426. https://doi.org/10.1016/j.aej.2022.09.039 doi: 10.1016/j.aej.2022.09.039
    [38] O. Ala'yed, B. Batiha, D. Alghazo, F. Ghanim, Cubic B-spline method for the solution of the quadratic Riccati differential equation, AIMS Math., 8 (2023), 9576–9584. https://doi.org/10.3934/math.2023483 doi: 10.3934/math.2023483
    [39] M. K. Kadalbajoo, V. Kumar, B-spline method for a class of singular two-point boundary value problems using optimal grid, Appl. Math. Comput., 188 (2007), 1856–1869. https://doi.org/10.1016/j.amc.2006.11.050 doi: 10.1016/j.amc.2006.11.050
    [40] A. M. Nagy, A. A. El-Sayed, A novel operational matrix for the numerical solution of nonlinear Lane-Emden system of fractional order, Comput. Appl. Math., 40 (2021), 85. https://doi.org/10.1007/s40314-021-01477-8 doi: 10.1007/s40314-021-01477-8
    [41] A. K. Verma, N. Kumar, D. Tiwari, Haar wavelets collocation method for a system of nonlinear singular differential equations, Eng. Comput., 38 (2020), 659–698.
    [42] S. Tomar, An effective approach for solving a class of nonlinear singular boundary value problems arising in different physical phenomena, Int. J. Comput. Math., 98 (2021), 2060–2077. https://doi.org/10.1080/00207160.2021.1874943 doi: 10.1080/00207160.2021.1874943
    [43] R. Singh, M. Singh, An optimal decomposition method for analytical and numerical solution of third-order Emden-Fowler type equations, J. Comput. Sci., 63 (2022), 101790. https://doi.org/10.1016/j.jocs.2022.101790 doi: 10.1016/j.jocs.2022.101790
    [44] R. Singh, G. Singh, M. Singh, Numerical algorithm for solution of the system of Emden-Fowler type equations, Int. J. Appl. Comput. Math., 7 (2021), 136. https://doi.org/10.1007/s40819-021-01066-7 doi: 10.1007/s40819-021-01066-7
    [45] R. K. Pandey, S. Tomar, An efficient analytical iterative technique for solving nonlinear differential equations, Comput. Appl. Math., 40 (2021), 180. https://doi.org/10.1007/s40314-021-01563-x doi: 10.1007/s40314-021-01563-x
    [46] R. K. Pandey, S. Tomar, An effective scheme for solving a class of nonlinear doubly singular boundary value problems through quasilinearization approach, J. Comput. Appl. Math., 392 (2021), 113411. https://doi.org/10.1016/j.cam.2021.113411 doi: 10.1016/j.cam.2021.113411
    [47] N. Sriwastav, A. K. Barnwal, A. M. Wazwaz, M. Singh, A novel numerical approach and stability analysis for a class of pantograph delay differential equation, J. Comput. Sci., 67 (2023), 101976. https://doi.org/10.1016/j.jocs.2023.101976 doi: 10.1016/j.jocs.2023.101976
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(131) Cited by(6)

Article outline

Figures and Tables

Figures(4)  /  Tables(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog