Research article Special Issues

Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation

  • Received: 12 May 2023 Revised: 24 July 2023 Accepted: 20 August 2023 Published: 01 September 2023
  • MSC : 33B10, 26A51, 26A48, 39B62, 39A12

  • In this study, we present a numerical method that utilizes trigonometric cubic B-spline functions to solve the time fractional gas dynamics equation, which is a key component in the study of physical phenomena such as explosions, combustion, detonation and condensation in a moving flow. The Caputo formula is used to define the fractional time derivative, which generalizes the framework for both singular and non-singular kernels. To discretize the unknown function and its derivatives in the spatial direction, we employ trigonometric cubic B-spline functions, while the usual finite difference formulation is used to approximate the Caputo time fractional derivative. A stability analysis of the scheme is provided to ensure that errors do not propagate over time, and a convergence analysis is conducted to measure the accuracy of the solution. To demonstrate the effectiveness of the proposed methodology, we solve various relevant examples and present graphical and tabular results to evaluate the outcomes of the strategy.

    Citation: Rabia Noureen, Muhammad Nawaz Naeem, Dumitru Baleanu, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa. Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation[J]. AIMS Mathematics, 2023, 8(11): 25343-25370. doi: 10.3934/math.20231293

    Related Papers:

  • In this study, we present a numerical method that utilizes trigonometric cubic B-spline functions to solve the time fractional gas dynamics equation, which is a key component in the study of physical phenomena such as explosions, combustion, detonation and condensation in a moving flow. The Caputo formula is used to define the fractional time derivative, which generalizes the framework for both singular and non-singular kernels. To discretize the unknown function and its derivatives in the spatial direction, we employ trigonometric cubic B-spline functions, while the usual finite difference formulation is used to approximate the Caputo time fractional derivative. A stability analysis of the scheme is provided to ensure that errors do not propagate over time, and a convergence analysis is conducted to measure the accuracy of the solution. To demonstrate the effectiveness of the proposed methodology, we solve various relevant examples and present graphical and tabular results to evaluate the outcomes of the strategy.



    加载中


    [1] O. A. Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Solitons Fract., 125 (2019), 163–170. https://doi.org/10.1016/j.chaos.2019.05.025 doi: 10.1016/j.chaos.2019.05.025
    [2] Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068 doi: 10.1016/j.amc.2007.07.068
    [3] X. B. Yin, S. Kumar, D. Kumar, A modified homotopy analysis method for solution of fractional wave equations, Adv. Mech. Eng., 7 (2015), 12. https://doi.org/10.1177/1687814015620330 doi: 10.1177/1687814015620330
    [4] X. X. Li, C. H. He, Homotopy perturbation method coupled with the enhanced perturbation method, J. Low Freq. Noise Vib. Active Control, 38 (2019), 1399–1403. https://doi.org/10.1177/1461348418800554 doi: 10.1177/1461348418800554
    [5] B. Ibis, The approximate solutions of fractional gas dynamics equations by means of fractional natural decomposition method, New Trends Math. Sci., 5 (2017), 271–279. https://doi.org/10.20852/ntmsci.2017.238 doi: 10.20852/ntmsci.2017.238
    [6] S. Das, R. Kumar, Approximate analytical solutions of fractional gas dynamic equations, Appl. Math. Comput., 217 (2011), 9905–9915. https://doi.org/10.1016/j.amc.2011.03.144 doi: 10.1016/j.amc.2011.03.144
    [7] T. R. R. Rao, R. S. Balaji, Numerical solution of time fractional gas dynamics equation, Int. J. Eng. Technol., 7 (2018), 610–612. https://doi.org/10.14419/ijet.v7i4.10.21294 doi: 10.14419/ijet.v7i4.10.21294
    [8] K. S. Saad, E. H. Al-Shareef, M. S. Mohamed, X. J. Yang, Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, Eur. Phys. J. Plus, 132 (2017), 1–11. https://doi.org/10.1140/epjp/i2017-11303-6 doi: 10.1140/epjp/i2017-11303-6
    [9] N. Iqbal, A. Akgül, R. Shah, A. Bariq, M. M. Al-Sawalha, A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Spaces, 2022 (2022), 1–14. https://doi.org/10.1155/2022/3341754 doi: 10.1155/2022/3341754
    [10] G. Fairweather, D. Meade, A survey of spline collocation methods for the numerical solution of differential equations, In: Mathematics for large scale computing, Boca Raton: CRC Press, 1989.
    [11] B. Bialecki, G. Fairweather, A. Karageorghis, Matrix decomposition algorithms for modified spline collocation for Helmholtz problems, SIAM J. Sci. Comput., 24 (2003), 1733–1753. https://doi.org/10.1137/S106482750139964X doi: 10.1137/S106482750139964X
    [12] B. Bialecki, G. Fairweather, Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math., 128 (2001), 55–82. https://doi.org/10.1016/S0377-0427(00)00509-4 doi: 10.1016/S0377-0427(00)00509-4
    [13] A. Esen, O. Tasbozan, Cubic B-spline collocation method for solving time fractional gas dynamics equation, Tbilisi Math. J., 8 (2015), 221–231. https://doi.org/10.1515/tmj-2015-0024 doi: 10.1515/tmj-2015-0024
    [14] A. Esen, O. Tasbozan, An approach to time fractional gas dynamics equation: Quadratic B-spline Galerkin method, Appl. Math. Comput., 261 (2015), 330–336. https://doi.org/10.1016/j.amc.2015.03.126 doi: 10.1016/j.amc.2015.03.126
    [15] G. Z. Wang, Q. Y. Chen, M. H. Zhou, NUAT B-spline curves, Comput. Aided Geom. Des., 21 (2004), 193–205. https://doi.org/10.1016/j.cagd.2003.10.002 doi: 10.1016/j.cagd.2003.10.002
    [16] T. Nazir, M. Abbas, A. I. M. Ismail, A. A. Majid, A. Rashid, The numerical solution of advection-diffusion problems using new cubic trigonometric B-splines approach, Appl. Math. Model., 40 (2016), 4586–4611. https://doi.org/10.1016/j.apm.2015.11.041 doi: 10.1016/j.apm.2015.11.041
    [17] B. Ay, I. Dag, M. Z. Gorgulu, Trigonometric quadratic B-spline subdomain Galerkin algorithm for the Burgers' equation, Open Phys., 13 (2015), 400–406. https://doi.org/10.1515/phys-2015-0059 doi: 10.1515/phys-2015-0059
    [18] M. Yaseen, M. Abbas, A. I. Ismail, T. Nazir, A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations, Appl. Math. Comput., 293 (2017), 311–319. https://doi.org/10.1016/j.amc.2016.08.028 doi: 10.1016/j.amc.2016.08.028
    [19] M. Yaseen, M. Abbas, B. Ahmad, Numerical simulation of the nonlinear generalized time-fractional Klein-Gordon equation using cubic trigonometric B-spline functions, Math. Methods Appl. Sci., 44 (2021), 901–916. https://doi.org/10.1002/mma.6798 doi: 10.1002/mma.6798
    [20] M. Yaseen, M. Abbas, M. B. Riaz, A collocation method based on cubic trigonometric B-splines for the numerical simulation of the time-fractional diffusion equation, Adv. Differ. Equ., 2021 (2021), 1–19. https://doi.org/10.1186/s13662-021-03360-6 doi: 10.1186/s13662-021-03360-6
    [21] M. Abbas, A. A. Majid, A. I. M. Ismail, A. Rashid, The application of cubic trigonometric B-spline to the numerical solution of the hyperbolic problems, Appl. Math. Comput., 239 (2014), 74–88. https://doi.org/10.1016/j.amc.2014.04.031 doi: 10.1016/j.amc.2014.04.031
    [22] S. G. Rubin, R. A. Graves, Viscous flow solutions with a cubic spline approximation, Comput. Fluids, 3 (1975), 1–36. https://doi.org/10.1016/0045-7930(75)90006-7 doi: 10.1016/0045-7930(75)90006-7
    [23] N. Khalid, M. Abbas, M. K. Iqbal, Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms, Appl. Math. Comput., 349 (2019), 393–407. https://doi.org/10.1016/j.amc.2018.12.066 doi: 10.1016/j.amc.2018.12.066
    [24] M. Yaseen, M. Abbas, An efficient computational technique based on cubic trigonometric B-splines for time fractional Burgers' equation, Int. J. Comput. Math., 97 (2020), 725–738. https://doi.org/10.1080/00207160.2019.1612053 doi: 10.1080/00207160.2019.1612053
    [25] W. K. Zahra, Trigonometric B-spline collocation method for solving PHI-four and Allen-Cahn equations, Med. J. Math., 14 (2017), 1–19. https://doi.org/10.1007/s00009-017-0916-8 doi: 10.1007/s00009-017-0916-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1512) PDF downloads(136) Cited by(9)

Article outline

Figures and Tables

Figures(17)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog