A bivariate extension of a flexible univariate family is proposed. The new family is called bivariate q-extended Weibull Morgenstern family of distributions which can be constructed based on the Farlie-Gumbel-Morgenstern (FGM) copula technique. After introducing the new family, four sub-models are discussed in detail from the theoretical and numerical coefficient of correlation point of view with pointing to the effect of the $ q $ parameter.
Citation: Rasha Abd-Elwahaab Attwa, Taha Radwan, Esraa Osama Abo Zaid. Bivariate q-extended Weibull morgenstern family and correlation coefficient formulas for some of its sub-models[J]. AIMS Mathematics, 2023, 8(11): 25325-25342. doi: 10.3934/math.20231292
A bivariate extension of a flexible univariate family is proposed. The new family is called bivariate q-extended Weibull Morgenstern family of distributions which can be constructed based on the Farlie-Gumbel-Morgenstern (FGM) copula technique. After introducing the new family, four sub-models are discussed in detail from the theoretical and numerical coefficient of correlation point of view with pointing to the effect of the $ q $ parameter.
[1] | C. A. Charalambides, Discrete q-distributions on Bernoulli trials with a geometrically varying success probability, J. Statist. Plann. Inference, 140 (2010), 2355–2383. https://doi.org/10.1016/j.jspi.2010.03.024 doi: 10.1016/j.jspi.2010.03.024 |
[2] | D. Cousineau, Fitting the three-parameter Weibull distribution: Review and evaluation of existing and new methods, IEEE T. Dielect. El. In., 16 (2009), 281–288. https://doi.org/10.1109/TDEI.2009.4784578 doi: 10.1109/TDEI.2009.4784578 |
[3] | R. Diaz, C. Ortiz, E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math., 8 (2010), 448–458. https://doi.org/10.2478/s11533-010-0029-0 doi: 10.2478/s11533-010-0029-0 |
[4] | R. Diaz, E. Pariguan, On the Gaussian q-distribution, J. Math. Anal. Appl., 358 (2009), 1–9. https://doi.org/10.1016/j.jmaa.2009.04.046 doi: 10.1016/j.jmaa.2009.04.046 |
[5] | H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9 |
[6] | I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products (7 Eds.), Elsevier Inc., 2007. |
[7] | E. J. Gumbel, Bivariate exponential distributions, J. Amer. Statist. Assoc., 299 (1960), 698–707. https://doi.org/10.1080/01621459.1960.10483368 doi: 10.1080/01621459.1960.10483368 |
[8] | M. Gurvich, A. Dibenedetto, S. Ranade, A new statistical distribution for characterizing the random strength of brittle materials, J. Mater. Sci., 32 (1997), 2559–2564. https://doi.org/10.1023/A:1018594215963 doi: 10.1023/A:1018594215963 |
[9] | P. Krugman, The self-organizing economy, Blackwell Publishers Cambridge, Massachusetts, 1996. |
[10] | A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., 396 (2005), 317–328. https://doi.org/10.1016/j.laa.2004.09.022 doi: 10.1016/j.laa.2004.09.022 |
[11] | D. Morgenstern, Einfache beispiele zweidimensionaler verteilungen, Mitteilungsbl. Math. Stat., 8 (1956), 234–235. |
[12] | E. M. Nigm, S. Sadk, Stress-strength reliability of q-extended weibull distribution under progressive Type-II censoring, Accepted for publication in International Mathematical Forum, 2021b. |
[13] | E. M. Nigm, S. W. Sadk, Stress-strength reliability for marshall-olkin q- extended Weibull family based on Type-II progressive censoring, Submitted 2021c. |
[14] | S. B. Provost, A. Saboor, G. M. Cordeiro, M. Mansoor, On the q-generalized extreme value distribution, REVSTAT-Stat. J., 16 (2018), 45–70. https://doi.org/10.57805/revstat.v16i1.232 doi: 10.57805/revstat.v16i1.232 |
[15] | A. D. Sole, V. G. Kac, On integral representations of q-gamma and q-beta functions, Atti Accod. Naz. Lincie Cl. Fis. Mat. Nature. Rend. Linciei(9) Mat. Appl., 161 (2005), 11–29. https://doi.org/10.48550/arXiv.math/0302032 doi: 10.48550/arXiv.math/0302032 |
[16] | H. M. Srivastave, J. Choi, Zeta and q-zeta functions and associated series and integerals, Inc., Amsterdam, 2012. |
[17] | S. Tahmasebi, A. A. Jafari, Concomitants of order statistics and record values from Morgenstern type bivariate-generalized exponential distribution, Bull. Malays. Math. Sci. Soc., 38 (2015), 1411–1423. https://doi.org/10.1007/s40840-014-0087-8 doi: 10.1007/s40840-014-0087-8 |
[18] | S. Tahmasebi, A. A. Jafari, M. Ahsanullah, Properties on concomitants of generalized order statistics from a bivariate Rayleigh distribution, B. Malays. Math. Sci. So., 41 (2018), 355–370. https://doi.org/10.1007/978-1-4842-4072-4_19 doi: 10.1007/978-1-4842-4072-4_19 |