Citation: Sajid Mehboob Zaidi, Mashail M. AL Sobhi, M. El-Morshedy, Ahmed Z. Afify. A new generalized family of distributions: Properties and applications[J]. AIMS Mathematics, 2021, 6(1): 456-476. doi: 10.3934/math.2021028
[1] | A. Z. Afify, M. Alizadeh, The odd Dagum family of distributions: Properties and applications, J. Appl. Probab. Stat., 15 (2020), 45-72. |
[2] | A. Z. Afify, M. Alizadeh, M. Zayed, T. G. Ramires, F. Louzada, The odd log-logistic exponentiated Weibull distribution: Regression modeling, properties, and applications, Iran. J. Sci. Technol. A, 42 (2018), 2273-2288. |
[3] | A. Z. Afify, G. M. Cordeiro, M. E. Mead, M. Alizadeh, H. Al-Mofleh, Z. M. Nofal, The generalized odd Lindley-G family: Properties and applications, An. Acad. Bras. Ciênc., 91 (2019), 1-22. |
[4] | A. Z. Afify, A. Emrah, M. Alizadeh, G. Ozel, G. G. Hamedani, The odd exponentiated half-logisticG family: Properties, characterizations and applications, Chilean Journal of Statistics, 8 (2017), 65-91. |
[5] | M. Alizadeh, M. Emadi, M. Doostparast, G. M. Cordeiro, E. M. Ortega, R. R. Pescim, A new family of distributions: The Kumaraswamy odd log-logistic, properties and applications, Hacet. J. Math. Stat., 44 (2015), 1491-1512. |
[6] | M. Alizadeh, S. M. T. K. MirMostafee, E. M. M. Ortega, T. G. Ramires, G. M. Cordeiro, The odd log-logistic logarithmic generated family of distributions with applications in different areas, Journal of Statistical Distributions and Applications, 4 (2017), 1-25. doi: 10.1186/s40488-017-0055-6 |
[7] | M. Alizadeh, S. Tahmasebi, H. Haghbin, The exponentiated odd log-logistic family of distributions: Properties and applications, Journal of Statistical Modelling: Theory and Applications, 1 (2018), 29-54. |
[8] | E. Altun, M. Alizadeh, A. Z. Afify, G. Ozel, The generalized odd half-logistic family of distributions with regression models, International Journal of Statistics & Economics, 20 (2019), 88-110. |
[9] | A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron, 71 (2013), 63-79. doi: 10.1007/s40300-013-0007-y |
[10] | A. M. Amini, S. M. T. K. MirMostafaee, J. C. Ahmadi, Log-gamma-generated families of distributions, Statistics, 48 (2014), 913-932. doi: 10.1080/02331888.2012.748775 |
[11] | M. Bourguignon, R. B. Silva, G. M. Cordeiro, The Weibull-G family of probability distributions, Journal of Data Science, 12 (2014), 53-68. |
[12] | V. Choulakian, M. A Stephens, Goodness-of-fit tests for the generalized pareto distribution, Technometrics, 43 (2001), 478-484. |
[13] | G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. Aryal, The exponentiated Weibull-H family of distributions: Theory and applications, Mediterr. J. Math., 14 (2017), 1-22. doi: 10.1007/s00009-016-0833-2 |
[14] | G. M. Cordeiro, M. Alizadeh, P. R. D. Marinho, The type I half-logistic family of distributions, J. Stat. Comput. Sim., 86 (2015), 707-728. |
[15] | G. M. Cordeiro, M. Alizadeh, G. Ozel, B. Hosseini, E. M. M. Ortega, E. Altun, The generalized odd log-logistic family of distributions: Properties, regression models and applications, J. Stat. Comput. Sim., 87 (2017), 908-932. |
[16] | G. M. Cordeiro, M. Alizadeh, M. H. Tahir, M. Mansoor, M. Bourguignon, G. G. Hamedani, The beta odd log-logistic family of distributions, Hacet. J. Math. Stat., 45 (2015), 1175-1202. |
[17] | G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Sim., 81 (2011), 883-898. |
[18] | G. M. Cordeiro, E. M. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347 (2010), 1399-1429. doi: 10.1016/j.jfranklin.2010.06.010 |
[19] | N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. Theor. M., 31 (2002), 497-512. doi: 10.1081/STA-120003130 |
[20] | J. U. Gleaton, J. D. Lynch, Properties of generalized log logistic families of lifetime distributions, Journal of Probability and Statistical Science, 4 (2006), 51-64. |
[21] | M. Gouloust, S. Rezaei, M. Alizadeh, Mujtaba, S. Nadaraja, The odd log-logistic power series family of distributions: Properties and applications, Statistica, 79 (2019), 77-107. |
[22] | J. A. Greenwood, J. M. Landwehr, N. C. Matalas, J. R. Wallis, Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form, Water Resour. Res., 15 (1979), 1049-1054. doi: 10.1029/WR015i005p01049 |
[23] | R. C. Gupta, P. I. Gupta, R. D. Gupta, Modeling failure time data by Lehmann alternatives, Communications in Statistics-Theory and methods, 27 (1998), 887-904. doi: 10.1080/03610929808832134 |
[24] | R. D. Gupta, D. Kundu, Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biometrical J., 43 (2001), 117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R |
[25] | R. D. Gupta, D. Kundu, Theory & Methods: Generalized exponential distribution, Aust. N. Z. J. Stat., 41 (1999), 173-188. doi: 10.1111/1467-842X.00072 |
[26] | A. H. Soliman, M. A. E. Agarhy, M. Shakil, Type II half logistic family of distributions with applications, Pakistan Journal of Statistics and Operation Research, 13 (2017), 245-264. doi: 10.18187/pjsor.v13i2.1560 |
[27] | H. Haghbin, G. Ozel, M. Alizadeh, G. G. Hamedani, A new generalized odd log-logistic family of distributions, J. Commun. Stat. Theor. M., 46 (2017), 9897-9920. doi: 10.1080/03610926.2016.1222428 |
[28] | M. C. Korkmaz, H. M. Yousof, G. G. Hamedani, The exponential Lindley odd log-logisticG family: Properties, characterizations and applications, Journal of Statistical Theory and Applications, 17 (2018), 554-571. |
[29] | M. Akbarinasab, A. R. Arabpour, A. Mahdavi, Truncated log-logistic family of distributions, Journal of Biostatistics and Epidemiology, 5 (2019), 137-147. |
[30] | M. E. Mead, A. Z. Afify, On five-parameter burr xii distribution: Properties and applications, South African Statistical Journal, 51 (2017), 67-80. |
[31] | G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure data, IEEE T. Reliab., 42 (1993), 299-302. doi: 10.1109/24.229504 |
[32] | G. S. Mudholkar, A. D. Hutson, The exponentiated Weibull family: Some properties and a flood data application, Commun. Stat. Theor. M., 25 (1996), 3059-3083. doi: 10.1080/03610929608831886 |
[33] | S. Nadarajah, S. Kotz, The exponentiated type distributions, Acta Appl. Math., 92 (2006), 97-111. doi: 10.1007/s10440-006-9055-0 |
[34] | S. Nadarajah, A. K. Gupta, The exponentiated gamma distribution with application to drought data, Calcutta Statistical Association Bulletin, 59 (2007), 29-54. doi: 10.1177/0008068320070103 |
[35] | S. Nadarajah, The exponentiated exponential distribution: A survey, AStA Adv. Stat. Anal., 95 (2011), 219-251. doi: 10.1007/s10182-011-0154-5 |
[36] | P. F. Paranaiba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescima, The beta Burr XII distribution with application to lifetime data, Comput. Stat. Data An., 55 (2011), 1118-1136. doi: 10.1016/j.csda.2010.09.009 |
[37] | A. Sabor, M. Alizadeh, M. N. Khan, I. Gosh, G. M. Cordeiro, Odd log-logistic modified Weibull distribution, MeditERR. J. Math., 14 (2017), 1-19. doi: 10.1007/s00009-016-0833-2 |
[38] | R. L. Smith, J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. R. Appl. Soc. C. Appl., 36 (1987), 358-369. |
[39] | M. H. Tahir, G. M. Cordeiro, A. Alzaatreh, M. Zubair, M. Mansoor, The logistic-X family of distributions and its applications, Commun. Stat. Theor. M., 45 (2016), 7326-7349. doi: 10.1080/03610926.2014.980516 |
[40] | H. Torabi, N. H. Montazari, The logistic-uniform distribution and its application, Commun. Stat. Simul. C., 43 (2014), 2551-2569. doi: 10.1080/03610918.2012.737491 |