Loading [MathJax]/extensions/TeX/mathchoice.js
Research article

A new generalized family of distributions: Properties and applications

  • Received: 12 August 2020 Accepted: 09 October 2020 Published: 19 October 2020
  • MSC : 60E05, 62F10

  • We come up with a new class called log-logistic tan generalized family which provides sub-models with left skewed, symmetrical, right skewed, unimodal, bimodal and reversed-J densities, and increasing, decreasing, modified bathtub, bathtub, unimodal, reversed-J shaped, and J-shaped hazard rates. Some of its sub-models are provided along with some general structural properties. The parameter estimation has been conducted via maximum likelihood. Moreover, the estimators behavior are assessed using various simulation results. The capability of the log-logistic tan-Weibull model is proved using two real-life data sets. It provides higher quality fit than competing Weibull extensions, among others.

    Citation: Sajid Mehboob Zaidi, Mashail M. AL Sobhi, M. El-Morshedy, Ahmed Z. Afify. A new generalized family of distributions: Properties and applications[J]. AIMS Mathematics, 2021, 6(1): 456-476. doi: 10.3934/math.2021028

    Related Papers:

    [1] M. G. M. Ghazal . Modified Chen distribution: Properties, estimation, and applications in reliability analysis. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662
    [2] Refah Alotaibi, Hassan Okasha, Hoda Rezk, Abdullah M. Almarashi, Mazen Nassar . On a new flexible Lomax distribution: statistical properties and estimation procedures with applications to engineering and medical data. AIMS Mathematics, 2021, 6(12): 13976-13999. doi: 10.3934/math.2021808
    [3] Hisham Mahran, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications. AIMS Mathematics, 2024, 9(5): 11910-11940. doi: 10.3934/math.2024582
    [4] M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857
    [5] M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for qWeibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404
    [6] A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310
    [7] Qasim Ramzan, Muhammad Amin, Ahmed Elhassanein, Muhammad Ikram . The extended generalized inverted Kumaraswamy Weibull distribution: Properties and applications. AIMS Mathematics, 2021, 6(9): 9955-9980. doi: 10.3934/math.2021579
    [8] Ayed. R. A. Alanzi, M. Qaisar Rafique, M. H. Tahir, Farrukh Jamal, M. Adnan Hussain, Waqas Sami . A novel Muth generalized family of distributions: Properties and applications to quality control. AIMS Mathematics, 2023, 8(3): 6559-6580. doi: 10.3934/math.2023331
    [9] Ekramy A. Hussein, Hassan M. Aljohani, Ahmed Z. Afify . The extended Weibull–Fréchet distribution: properties, inference, and applications in medicine and engineering. AIMS Mathematics, 2022, 7(1): 225-246. doi: 10.3934/math.2022014
    [10] Jumanah Ahmed Darwish, Saman Hanif Shahbaz, Lutfiah Ismail Al-Turk, Muhammad Qaiser Shahbaz . Some bivariate and multivariate families of distributions: Theory, inference and application. AIMS Mathematics, 2022, 7(8): 15584-15611. doi: 10.3934/math.2022854
  • We come up with a new class called log-logistic tan generalized family which provides sub-models with left skewed, symmetrical, right skewed, unimodal, bimodal and reversed-J densities, and increasing, decreasing, modified bathtub, bathtub, unimodal, reversed-J shaped, and J-shaped hazard rates. Some of its sub-models are provided along with some general structural properties. The parameter estimation has been conducted via maximum likelihood. Moreover, the estimators behavior are assessed using various simulation results. The capability of the log-logistic tan-Weibull model is proved using two real-life data sets. It provides higher quality fit than competing Weibull extensions, among others.


    The classical probability distributions were generalized through the induction of location, scale and shape parameters. Recently, appreciable attempts have been made in the development of the new probability distributions which have big privilege of more flexibility, fitting specific and several real world sequence of events.

    The improvement in the G-Classes revolution began with the fundamental article of Alzaatreh et al. [9] in which they proposed transformed (T)-transformer (X) (T-X) family.

    Consider the random variable (rv) T[c,d] for c<d with probability density function (pdf) r(t), and consider a link function, W():[0,1]R, that satisfy the conditions: For any baseline cumulative distribution function (cdf) G(x), W[G(x)][c,d], is monotonically non-decreasing and differentiable, for x, W[G(x)]c, and for x, W[G(x)]d. Hence, the cdf of the T-X class has the form

    F(x)=W[G(x)]ar(t)dt. (1.1)

    Many authors constructed extended generalized families by using T-X approach. Some examples of generalized classes are, beta-G [19], Kw-G type-1 [17], log-gamma-G type-2 [10], gamma-X [40], exponentiated T-X [9], Weibull-G [11], exponentiated-Weibull-H [13] and generalized odd Lindley-G [3].

    Motivated by the new prospect in term of accuracy and exibility of a new distribution, we propose a new propose a new flexible family called, log-logistic tan generalized (LLT-G) family which provides greater accuracy and flexibility in fitting real-life data. Some general properties of the LLT-G class will be provided here. We provide two applications for one special sub-model of the proposed class, called log-logistic tan-Weibull (LLT-W) distribution which has decreasing, increasing, bathtub and unimodal hazard rate functions.

    Let r(t)=cs(ts)c1[1+(ts)C]2 be the pdf of a rv0<t< and W[G(x)]=tan[π2Gα(x)] which satisfies the conditions of T-X family. The cdf and pdf of the new LLT-G family take the forms

    F(x)=tan[π2Gα(x)]0r(t)dt=1(1+sc{tan[π2Gα(x)]}c)1,x>0,α,c,s>0 (1.2)

    and

    f(x)=παc2scg(x)[G(x)]α1{sec2[π2Gα(x)]}{tan[π2Gα(x)]}c1×(1+sc{tan[π2Gα(x)]}c)2,x>0,α,c,s>0. (1.3)

    The LLT-G hazard rate function (hrf) has the form

    h(x)=παc2scg(x)[G(x)]α1[sec2(π2Gα(x))]{tan[π2Gα(x)]}c1×(1+sc{tan[π2Gα(x)]}c)1,x>0,α,c,s>0. (1.4)

    Henceforth, the rv with PDF (1.3) is denoted by XLLT-G(α,c,s).

    The LLT-G class has some desirable properties including the following.

    (ⅰ) The special sub-models of the LLT-G class can provide left skewed, symmetrical, right skewed, unimodal, bimodal and reversed-J densities, and increasing, modified bathtub, decreasing, bathtub, upside-down bathtub, reversed-J shaped, and J-shaped hazard rates. Hence, their special sub-models are capable of fitting different shapes of failure criteria.

    (ⅱ) The LLT-G class provides extended versions of baseline distributions with closed forms for the cdf and hrf. Hence the special sub-models of this family can be used in modeling and analyzing censored data.

    (ⅲ) The LLT-Weibull as a special sub-model of LLT-G class provides adequate fits than other modified models generated by other existing families under same baseline model.

    Recently, several authors have proposed many generalized classes based on the logistic and log logistic distributions. For example, Afify et al. [4], Alizadeh et al. [5], Alizadeh et al. [6], Alizadeh et al. [7], Altun et al. [8], Cordeiro et al. [14], Cordeiro et al. [15], Cordeiro et al. [16], Gleaton and Lynch [20], Mehdi et al. [21], Hassan et al [26], Haghbin et al. [27], Korkmaz et al. [28], Mahadevi et al. [29] and Torabi and Montazeri [40].

    This paper is outlined as follows. Five special models of the LLT-G family are provided in Section 2. In Section 3, we derived some mathematical properties of LLT-G family. Estimation of the LLT-G parameters using maximum likelihood is discussed in Section 4. Further, we present simulations for the LLT-W model to address the performance of the proposed estimators in Section 4. In Section 5, we show the importance and applicability of the LLT-G family via two real-life data applications. In Section 6, the paper is summarized.

    We study five sub-models of the LLT-G class using the baseline Weibull, normal, Rayleigh, exponential and Burr XII distributions (1.3) and provide some plots for their pdfs and hrfs. Figures 15 reveals that the special sub-models of the LLT-G class can provide left skewed, symmetrical, right skewed, unimodal, bimodal and reversed-J densities, and increasing, modified bathtub, decreasing, bathtub, unimodal, reversed-J shaped, and J-shaped failure rates.

    Figure 1.  The LLT-W density (left) and hazard rate (right) plots for different parametric values.
    Figure 2.  The LLT-N density (left) and hazard rate (right) plots for different parametric values.
    Figure 3.  The LLT-R density (left) and hrf (right) plots for different parametric values.
    Figure 4.  The LLT-E density (left) and hazard rate (right) plots for different parametric values.
    Figure 5.  The LLT-BXII density (left) and hazard rate (right) plots for different parametric values.

    Using the Weibull pdf, g(x)=bxb1exb, x>0,b>0, we obtain the cdf of the LLT-W distribution

    F(x)=1(1+sc{tan[π2(1exb)α]}c)1. (2.1)

    The pdf associated with (2.1) reduces to

    f(x)=παbc2scxb1exb(1exb)α1{sec2[π2(1exb)α]}×{tan[π2(1exb)α]}c1(1+sc{tan[π2(1exb)α]}c)2. (2.2)

    The plots in Figure 1 depict pdf and hrf shapes of the LLT-W distribution for different parametric values.

    The pdf of normal distribution is g(x)=1σ2πex22σ2, x,σ>0. The cdf of the LLT-N reduces to

    F(x)=1{1+sc[tan(π2{12[1+erf(xσ2)]}α)]c}1. (2.3)

    The LLT-N pdf takes the form

    f(x)=παc2scσ2πex22σ2{12[1+erf(xσ2)]}α1[sec2(π2{12[1+erf(xσ2)]}α)]×[tan(π2{12[1+erf(xσ2)]}α)]c1{1+sc[tan(π2{12[1+erf(xσ2)]}α)]c}2. (2.4)

    Some plots of the density and hazard rate functions of the LLT-N distribution for several parametric values are shown in Figure 2.

    Using the Rayleigh rv with pdf, g(x)=2axeax2, x>0,a>0, the cdf of the LLT-R distribution becomes

    F(x)=1(1+sc{tan[π2(1eax2)α]}c)1. (2.5)

    The pdf of the LLT-R reduces to

    f(x)=παcascxeax2(1eax2)α1{sec2[π2(1eax2)α]}×{tan[π2(1eax2)α]}c1(1+sc{tan[π2(1eax2)α]}c)2. (2.6)

    Figure 3 depicts possible plots of the LLT-R pdf and hrf for various parametric values.

    Consider the exponential distribution with pdf g(x)=bebx, x>0,b>0. Hence, the cdf and pdf of LLT-E distribution are

    F(x)=1(1+sc{tan[π2(1ebx)α]}c)1 (2.7)

    and

    f(x)=παbc2scebx(1ebx)α1{sec2[π2(1ebx)α]}×{tan[π2(1ebx)α]}c1(1+sc{tan[π2(1ebx)α]}c)2. (2.8)

    Figure 4 depicts pdf and hrf plots of the LLT-E distribution for different parametric values.

    Let X be a Burr XII rv with pdf g(x;a,b)=abxa1(1+xa)b1, x>0,a,b>0.

    The cdf of the LLT-BXII distribution is

    F(x)=1[1+sc(tan{π2[1(1+xa)b]α})c]1. (2.9)

    The pdf of the LLT-BXII reduces to

    f(x)=παabc2scxa1(1+xa)b1[1(1+xa)b]α1(sec2{π2[1(1+xa)b]α})×(tan{π2[1(1+xa)b]α})c1[1+sc(tan{π2[1(1+xa)b]α})c]2. (2.10)

    Figure 5 displays density and hazard rate plots of the LLT-BXII distribution.

    In this section, the LLT-G properties such as quantile function (qf), useful expansion, moments, generating function, and order statistics are derived. The expressions derived for the LLT-G family can be handled using symbolic computation software, such as, Maple, Matlab, Mathematica, Mathcad, and R because of their ability to deal with complex and formidable size mathematical expressions. Established explicit formulae to evaluate statistical and mathematical measures can be more efficient than computing them directly by numerical integration. It is noted that the infinity limit in the sums of these expressions can be substituted by a large positive integer such as 40 or 50 for most practical purposes.

    The qf of X is calculated directly by inverting (2.1) as

    Q(u)=G1{2πtan1[s(u1u)1c]}1α, (3.1)

    Eq (3.1) can be used to simulate any baseline model and to obtain the median = Q(1/2), Bowley's skewness and Moors kurtosis.

    The formation of the pdf and cdf in power series is an important concept.

    Some essential properties of the exponentiated-G (exp-G) distributions are studied by [23,24,25,31,32,33,34,35].

    The cdf of the LLT-G family can be written as

    F(x)=1(1+sc{tan[π2Gα(x)]}c)1,x>0,α,c,s>0. (3.2)

    Using the binomial expansion

    (1+x)1=i=1(1)ixi,x1

    and the convergent series of tan function which can be calculated using the Mathematica software.

    [tan(πG(x)2)]ic=j=0[bj(ic)](πG(x)2)α(2j+ic),G(x)1,x>0.

    Applying the last two equations to (3.2), the cdf of LLT-G reduces to

    F(x)=i=1j=0(1)(i+1)sic[bj(ic)](π2)(2j+ic)[G(x)]α(2j+ic),x>0. (3.3)

    We can rewrite the Eq (3.2) as

    F(x)=i=1j=0Wi,jHα(2j+ic)(x), (3.4)

    where

    Wi,j=(1)(i+1)sicbj(ic)(π2)(2j+ic). (3.5)

    The below power series can be calculated using the Mathematica software

    [tan(πG(x)2)]ic=j=0bj(ic)(πG(x)2)α(2j+ic), (3.6)

    where b0(ic)=1,b1(ic)=ic3,b2(ic)= , etc. and Hα(2j+ic)(x)=[G(x)]α(2j+ic) denotes the cdf of exp-G model with parameter α(2j+ic). So, the LLT-G pdf reduces to

    f(x)=i=1j=0wi,jhα(2j+ic)(x), (3.7)

    where hα(2j+ic)(x) denotes the exp-G pdf with parameter α(2j+ic). Hereafter, a rv having the pdf hα(2j+ic)(x) is denoted by Yα(2j+i)exp-Gα(2j+ic). Eq (3.7) delivers up that the LLT-G pdf is a linear combination of exp-G densities. Thus, a few properties of LLT-G class can be calculated someplace precisely from exp-G properties.

    Assuming that Z is a rv with a baseline G(x). The moments of X can be derived from the (r,k)th probability weighted moment (PWM) of Z defined by [22] as

    τr,k=E[G(Z)kZr]=xrg(x)G(x)kdx. (3.8)

    Using Eq (3.7), one can write

    μr=E(Xr)=i=1j=0wi,jhα(2j+ic)(x)τr,α(2j+ic), (3.9)

    where τr,α(2j+ic)=10QG(u)ruα(2j+ic)du which is computed numerically for any baseline qf.

    The measures of skewness, β1, and kurtosis, β2, can be defined by the following two formulae

    β1=μ3+2μ133μ2μ1(μ2μ12)32 (3.10)

    and

    β2=μ44μ1μ3+6μ12μ33μ14μ2μ12 (3.11)

    The plots of skewness and kurtosis for the LLT-W distribution are visualized in Figure 6.

    Figure 6.  Skewness and kurtosis Plots for the LLT-W model.

    We present two formulae for the mgf, M(s)=E(esX), of the rvX.

    The first one comes from Eq (3.7) as

    M(s)=i=1j=0wi,jMα(2j+ic)(s), (3.12)

    where Mα(2j+ic)(s) is the exp-G mgf with power parameter α(2j+ic).

    Further, Eq (3.12) can also take the form

    M(s)=i=1j=0α(2j+ic)wi,jρα(2j+ic)(s), (3.13)

    where the quantity ρ2j+iβ(s)=10exp[sQG(u)]uα(2j+ic)du is calculated numerically.

    Incomplete moments are beneficial in calculating some inequality measures and mean deviations. The nth incomplete moments of the LLT-G family has the form

    mn(y)=i=1j=0wi,jα(2j+ic)G(y;ξξ)0QG(u)nuα(2j+ic)du. (3.14)

    For most baseline distributions, the above (3.14) can be obtained numerically.

    The first incomplete moment, m1(z), can be calculated from Eq (3.7) as

    m1(z)=i=1j=0wi,jJα(2j+ic)(z), (3.15)

    where

    Jα(2j+ic)(z)=zxhα(2j+ic)(x)dx. (3.16)

    Eq (3.15) is the primary quantity to obtain the mean deviations. We apply (3.15) to the LLT-W model. The LLT-W pdf with power parameter α(2j+ic), reduces to

    hα(2j+ic)(x)=α(2j+ic)g(x)[G(x)]α(2j+ic)1, (3.17)

    and then

    Jα(2j+ic)(x)=i=1j=0(1)(i+1)sicbj(ic)(π2)α(2j+ic)z0xα(2j+ic)g(x)[G(x)]α(2j+ic)1dx. (3.18)

    Another formula for m1(z) follows, Eq (3.7) with u=G(x), as

    m1(z)=i=1j=0α(2j+ic)wi,jTα(2j+ic)(z), (3.19)

    where Tα(2j+ic)(z)=G(z)0QG(u)uα(2j+ic)du.

    Consider a random sample from the LLT-G class, X1,,Xn. The pdf of the ith order statistic, Xi:n, has the form

    \begin{eqnarray} f_{i:n}(x) = D\,\, \sum\limits_{p = 0}^{n-i} \,\,(-1)^p\,{\binom{n - i }{p}}\,\, F(x)^{p+i-1}\,\,f(x), \end{eqnarray} (3.20)

    where D = n!/[(i-1)!\, (n-i)!] .

    After some algebra, the pdf of X_{i:n} takes the form

    \begin{eqnarray} f_{i:n}(x) = \sum\limits_{m,r,t = 0}^{\infty}\,\,d_{m,r,t}\,\,h_{ \alpha(2(r+t)+c(m+1))}(x), \end{eqnarray} (3.21)

    where the exp-G density, h_{\alpha(2(r+t)+c(m+1))}(x) , has a power parameter \alpha(2(r+t)+c(m+1))

    \begin{eqnarray*} \label{constants} d_{m,r,t}& = &\sum\limits_{j,l = 0}^{\infty}\, k\,\frac{(-1)^{j+l}}{ s^{c(m+1)}}{\binom{n-i }{j}}\,{\binom{i+j-1 }{l}}\,{\binom{-(l+2) }{m}} b_r[c(m+1)-1]\,c_t(2)\left(\frac{\pi}{2}\right)^{2(r+t)+c(m+1)} \end{eqnarray*}

    where b_r[c(m+1)-1] and c_t(2) are the coefficients of the power series expansion of tan and \sec functions by using \texttt{Mathematica}.

    Eq (3.21) can be used to calculate some quantities of the LLT-G order statistics from the exp-G quantities.

    We will discuss the estimation of the LLT-G parameters using the maximum likelihood (MLE) and study the performance of these estimators via simulations.

    Consider a random sample from the LLT-G class, x_{1}, \ldots, x_{n} , with \Theta = (\alpha, s, c, \, \boldsymbol{\xi })^{\top } . Then, the log-likelihood of \Theta reduces to

    \begin{eqnarray} \ell _{n}(\Theta ) & = &n\,\log \,(\frac{\pi}{2})+n\,\log \,(\alpha c )-n\,\log \,(s)+\sum\limits_{i = 1}^{n}\,\log \,\, G(x_{i};\boldsymbol{\xi })+ \sum\limits_{i = 1}^{n}\log \left[ \sec ^{2}\,\left( A_{i}\right) \right] \nonumber\\ &+&(\alpha -1)\sum\limits_{i = 1}^{n}\log \left[ G(x_{i};\boldsymbol{\xi })\right]+(c-1)\sum\limits_{i = 1}^{n}\log \left[ \frac{1}{s}\tan \left( A_{i}\right) \right]\\ &-& 2\,\sum\limits_{i = 1}^{n}\log \left\{ 1+\left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c}\right\}, \end{eqnarray} (4.1)

    where A_{i} = \frac{\pi }{2}\, G^{\alpha }(x_{i}; \boldsymbol{\xi }).

    The above log-likelihood (4.1) is maximized simply by statistical programs namely, \texttt{R}, \texttt{Mathcad}, \texttt{SAS}, \texttt{Mathematica} and \texttt{Ox} programs. It also is maximized by solving the following likelihood equations.

    The score vector elements, U_{n}(\Theta) = \left(\partial \ell _{n}/\partial \alpha, \partial \ell _{n}/\partial s, \partial \ell _{n}/\partial c, \partial \ell _{n}/\partial \boldsymbol{\xi }\right) ^{\top } , take the following formulae

    \begin{eqnarray} \frac{\partial \ell _{n}}{\partial \alpha } & = &\sum\limits_{i = 1}^{\infty }\log \left[ G(x_{i})\right] -\frac{\pi \, c}{s}\sum\limits_{i = 1}^{\infty }\frac{\left[ \sec ^{2}\left( A_{i}\right) \right] \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c-1}\left\{ G^{\alpha }(x_{i})\,\,\log \,\,\left[ G(x_{i})\right] \right\} }{\left\{ \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c}+1\right\} } \\ &+&(c-1)\sum\limits_{i = 1}^{\infty }\frac{\pi }{2}\left[ \csc \left( A_{i}\right) \right] \left[ \sec \left( A_{i}\right) \right] \left\{ G^{\alpha }(x_{i})\log\,\, \left[ G(x_{i})\right] \right\} \\ &+&\sum\limits_{i = 1}^{\infty }\,\pi \,\left[ \sec ^{2}\left( A_{i}\right) \right] \, \left[ \tan \left( A_{i}\right) \right] \left\{ G^{\alpha }(x_{i})\log \,\, \left[ G(x_{i})\right] \right\} , \end{eqnarray} (4.2)
    \begin{equation} \frac{\partial \ell _{n}}{\partial s} = (1-c)\sum\limits_{i = 1}^{\infty }\frac{1}{s}- \frac{n}{s}-\frac{2c}{s^{2}}\sum\limits_{i = 1}^{\infty }-\frac{\left[ \tan \left( A_{i}\right) \right] \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c-1}}{\left\{ \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c}+1\right\} }, \end{equation} (4.3)
    \begin{equation} \frac{\partial \ell _{n}}{\partial c} = \frac{n}{c}+\sum\limits_{i = 1}^{\infty }\log \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] -2\sum\limits_{i = 1}^{\infty } \frac{\left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c}\log \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] }{\left\{ \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c}+1\right\} } \end{equation} (4.4)

    and

    \begin{eqnarray} \frac{\partial \ell _{n}}{\partial \boldsymbol{\xi }} & = &\sum\limits_{i = 1}^{n}\frac{ g(x_{i};\,\boldsymbol{\xi })^{(\xi )}}{g(x_{i};\,\boldsymbol{\xi })}+(\alpha -1)\sum\limits_{i = 1}^{n}\frac{G(x_{i};\,\boldsymbol{\xi })^{(\xi )}}{G(x_{i};\, \boldsymbol{\xi })}+\pi \,\sum\limits_{i = 1}^{n}\left[ \frac{1}{s}\tan \left( A_{i}\right) \right] {G(x_{i};\,\boldsymbol{\xi })^{(\alpha \,\xi )}} \\ &-&\frac{\pi }{s}\,\sum\limits_{i = 1}^{\infty }\,\frac{\left[ \frac{c}{s}\tan \left( A_{i}\right) \right] ^{c-1}\left[ \sec ^{2}\left( A_{i}\right) \right] }{ \left\{ \left[ \frac{1}{s}\tan \left( A_{i}\right) \right] ^{c}+1\right\} }{ G(x_{i};\,\boldsymbol{\xi })^{(\alpha \,\xi )}} \\ &+&\frac{\pi }{2}\,(c-1)\,\sum\limits_{i = 1}^{\infty }\,\frac{\sec ^{2}\left( A_{i}\right) }{\tan \left( A_{i}\right) }{G(x_{i};\,\boldsymbol{\xi } )^{(\alpha \,\,\xi )},} \end{eqnarray} (4.5)

    where g^{(\xi)}(\cdot) = \partial g/\partial \boldsymbol{\xi} .

    This section deals with checking the MLEs performance in estimating the LLT-W parameters using a simulation study. For n = 50,100,300 and 500 , we generated 1,000 samples from the LLT-W model for various parametric values using the inversion method via the qf of the LLT-W given by

    \begin{align} Q(u) = \left[ -\log \left( 1- \Bigg\{\frac{2}{\pi }\,\tan ^{-1}\left[ s\left( \frac{u}{1-u} \right) ^{\frac{1}{c}}\right] \Bigg\}^{\frac{1}{\alpha }}\right) \right]^{\frac{1}{b}}. \end{align} (4.6)

    The numerical results of the mean square error (MSE), bias, coverage probability (C.P) and average width (AW) of the MLEs of the model parameters are obtained using \texttt{R} software. Further, the graphical representation of bias, MSE and C.P on several parametric values are also provided. The numerical results for bias, MSE, C.P and AW are listed in Tables 1 and 2. The bias, MSE and C.P are depicted in Figures 79. The values in Tables 1 and 2, and shapes of Figures 79 show quite stable estimates for the considered sample sizes. Moreover, the MSEs decrease as n increases, proving the consistency of maximum likelihood estimators.

    Table 1.  Estimated biases, MSE, C.P, and AW for MLEs of the LLT-W parameters.
    MLE( \alpha=0.20, \, s=0.50, \, c=1.30, \, b=1.50 )
    n Bias MSE C.P AW
    50 \alpha 0.02632 0.00861 0.99023 2.36578
    s 0.18709 0.28943 0.94067 2.19272
    c 0.17656 0.20302 0.94821 0.44550
    b -0.16017 0.18987 0.93041 1.56365
    100 \alpha 0.01978 0.00444 1.00022 1.25564
    s 0.09531 0.07086 0.96764 1.40323
    c 0.11487 0.08334 0.93042 0.29029
    b -0.15492 0.09865 0.98562 1.49110
    300 \alpha 0.01298 0.00175 1.00276 0.65864
    s 0.03895 0.01812 0.98054 0.758178
    c 0.05497 0.02252 0.97097 0.15874
    b -0.10343 0.03767 0.9819 1.47684
    500 \alpha 0.00787 0.00156 1.00876 0.48943
    s 0.01798 0.01028 0.99098 0.56132
    c 0.02509 0.01161 0.98987 0.11954
    b -0.05684 0.01249 0.99076 1.50318
    MLE( \alpha=0.80, \, s=1.10, \, c=1.60, \, b=1.80 )
    n Bias MSE C.P AW
    50 \alpha 0.17012 0.34589 0.88320 5.73426
    s 0.04296 1.17838 0.82209 3.51921
    c -0.19793 0.70917 0.84190 2.01749
    b 0.70237 1.92221 0.84084 3.51065
    100 \alpha 0.06832 0.10920 0.94890 3.29742
    s 0.04132 0.54720 0.90908 2.76689
    c -0.05829 0.45318 0.9593 1.25046
    b 0.29772 0.66458 0.9032 2.72295
    300 \alpha 0.01620 0.02809 0.99870 1.46536
    s 0.03836 0.16018 0.95430 1.62928
    c -0.01011 0.19239 0.9673 0.65048
    b 0.11101 0.18638 0.95650 2.23627
    500 \alpha 0.00503 0.01737 0.99201 1.02895
    s -0.00776 0.07429 0.96807 1.24003
    c -0.03110 0.10385 0.97956 0.49509
    b 0.07738 0.09929 0.9982 2.12406

     | Show Table
    DownLoad: CSV
    Table 2.  Estimated biases, MSE, C.P, and AW for MLEs of the LLT-W parameters.
    MLE( \alpha=1.20, \, s=1.50, \, c=2.00, \, b=2.50 )
    n Bias MSE C.P AW
    50 \alpha 0.55202 1.38710 0.76780 7.32437
    s 0.05138 1.54372 0.8452 6.13638
    c -0.40001 1.29038 0.96980 4.15307
    b 0.96352 2.67448 0.76980 5.539872
    100 \alpha 0.21052 0.45489 0.85098 5.69928
    s 0.04592 1.25029 0.92290 4.14301
    c -0.12428 0.85789 0.91428 2.57578
    b 0.41103 1.00012 0.80098 4.19802
    300 \alpha 0.06776 0.13128 0.90097 2.44256
    s 0.03576 0.34829 0.96980 2.50462
    c -0.02872 0.42232 0.98098 1.40965
    b 0.15902 0.34752 0.81980 3.36362
    500 \alpha 0.03962 0.07652 0.92620 1.48882
    s 0.03172 0.15372 0.98095 1.99142
    c 0.02030 0.27289 0.99980 1.07363
    b 0.05729 0.19258 0.88765 3.09498
    MLE( \alpha=1.80, \, s=2.20, \, c=2.60, \, b=3.20 )
    n Bias MSE C.P AW
    50 \alpha 2.55609 20.36652 0.63065 21.15316
    s 1.01329 12.664i2 0.73098 7.87152
    c -0.80862 2.19272 1.00098 13.64625
    b 1.24726 3.59262 0.97980 11.27043
    100 \alpha 1.08072 4.70272 0.71980 16.88462
    s 0.79362 7.37992 0.79809 6.31162
    c -0.45762 1.58666 1.00450 7.46862
    b 0.73178 1.80152 0.98609 7.66562
    300 \alpha 0.38762 1.13352 0.75780 5.98709
    s 0.27457 1.24709 0.91550 3.92154
    c -0.16804 0.79128 1.00010 3.93678
    b 0.29061 0.58889 0.99987 5.45865
    500 \alpha 0.17910 0.58267 0.80087 4.02328
    s 0.19884 0.78817 0.93709 3.28665
    c -0.03543 0.60569 1.00120 2.99141
    b 0.12976 0.33093 0.99120 4.82464

     | Show Table
    DownLoad: CSV
    Figure 7.  Biases plots of the LLT-W for different parametric values.
    Figure 8.  MSEs plots of the LLT-W for different parametric values.
    Figure 9.  C.P plots of the LLT-W for different parametric values.

    This section deals with checking the flexibility of the LLT-W distribution using two real-life data applications.

    The discrimination measures namely, the Kolmogrov-Smirnov (K-S) (with its p-value), Anderson-Darling ( A^{*} ) and Cramér–von Mises ( W^{*} ) are calculated to compare the competing models selected, odd log-logistic modified-Weibull (OLLMW) [37], odd Dagum-Weibull (ODW) [1], odd log logistic exponentiated-Weibull (OLLEW) [2], Kumaraswamy-Weibull (KW) [18], Kumaraswamy-exponentiated Burr XII (KEBXII) [30], Weibull-Lomax (WL) [39], and beta-Burr XII (BBXII) [36] distributions.

    The first real data contain 63 observations about strengths of 1.5 cm glass fibers which are reported in Smith and Naylor [38]. The second data set from Choulakian and Stephens (2001)[12], is the exceedances of flood peaks (in m3/s) of Wheaton River, Yukon Territory, Canada. The data consists of 72 exceedances for the years 1958–1984, rounded to one decimal place.

    Tables 3 and 4 report the MLEs (with their associated (standard errors)) of the parameters of competing models, and the statistics K-S, p-value, A^{*} and W^{*} .

    Table 3.  MLEs (SEs) and discrimination measures of competing models for glass fibres data.
    Model \alpha c s b \lambda p-value K-S W^{\ast} A^{\ast}
    LLT-W 2.53601 0.55698 38.13266 3.59346 - 0.70310 0.08880 0.06492 0.38337
    (1.35585) (0.29409) (54.65571) (0.70897) -
    OLLMW 2.62115 0.30243 0.01341 6.27241 - 0.62310 0.09479 0.08044 0.47130
    (0.78255) (0.08134) (0.01179) (1.09531) -
    ODW 5.29998 0.29810 9.78229 0.25124 2.32808 0.37470 0.11506 0.09164 0.51433
    (7.86358) (0.16143) (55.66654) (0.30203) (2.49274)
    OLLEW 0.30232 1.68593 1.99160 8.74967 - 0.22260 0.13196 0.18638 1.03125
    (0.26788) (0.74479) (0.29822) (3.94948) -
    KW 0.55200 0.22850 0.10530 7.18550 - 0.27860 0.12499 0.15316 0.86834
    (0.14662) (0.05697) (0.02394) (0.01724) -
    KEBXII 4.27374 658.39551 0.85420 1.31415 4.26494 0.02819 0.18391 0.36750 2.01129
    (36.70618) (745.20326) (0.65802) (1.48982) (36.63053)
    WL 0.01519 3.39585 7.04854 6.96628 - 0.16120 0.14136 0.18795 1.04676
    (0.02116) (0.93100) (12.01524) (12.82023) -
    BBXII 103.51855 174.50750 0.55986 0.57767 - 0.00230 0.23172 0.70303 3.84266
    (245.89797) (401.09856) (0.69152) (1.16196) -
    WBXII 0.01210 2.98508 1.57632 1.46315 - 0.11440 0.15069 0.21760 1.19955
    (0.01215) (2.60747) (1.02824) (0.59959) -

     | Show Table
    DownLoad: CSV
    Table 4.  MLEs (SEs) and discrimination measures of competing models for Wheaton river data.
    Model \alpha c s b \lambda p-value K-S W^{\ast} A^{\ast}
    LLT-W 0.22515 11.81810 0.80678 13.88789 - 0.99580 0.04853 0.02924 0.22831
    (0.07329) (14.49115) (0.08631) (4.14192) -
    OLLMW 0.00425 0.56057 0.07717 7.29698 - 0.43390 0.10266 0.13676 0.80928
    (0.00289) (0.07774) (0.05263) (4.47235) -
    ODW 0.31643 13.49715 0.05973 0.03914 1.50574 0.89770 0.06754 0.04044 0.25765
    (0.07961) (28.57142) (0.12519) (0.04984) (0.36632)
    OLLEW 4.83143 1.38144 4.23678 0.20378 - 0.93890 0.06280 0.03495 0.22261
    (0.00432) (0.00431) (0.80929) (0.02616) -
    KW 0.54109 1.36525 0.01059 1.39132 - 0.39510 0.10587 0.10785 0.64912
    (0.21553) (1.19205) (0.01303) (0.33498) -
    KEBXII -6.33954 63.90982 0.16781 1.72935 -2.82907 0.32580 0.11212 0.19729 1.08811
    (28.76141) (69.93447) (0.16987) (2.40254) (12.82347)
    WL 1.09893 0.76225 2.66001 46.73481 - 0.44240 0.10198 0.09932 0.60466
    (1.24287) (0.13144) (2.91198) (98.66865) -
    BBXII 59.58061 9.47 67.54568 0.13740 - 0.11800 0.14020 0.26630 1.49169
    (118.95689) (139.21525) (0.14196) (1.43564) -
    WBXII 0.12549 0.25801 5.19935 0.63785 - 0.62690 0.08840 0.12470 0.69009
    (0.03716) (0.22083) (4.60782) (0.21590) -

     | Show Table
    DownLoad: CSV

    The LLT-W model is compared with the ODW, OLLEW, KW, WBXII, KEBXII, BBXII, WL distributions in Tables 3 and 4. We note that the LLT-W model gives the lowest values for all discrimination measures and largest p-value among all fitted models. Hence, the LLT-W model could be chosen as a good alternative to explain glass fibers and Wheaton river data. The results in Tables 3 and 4 indicate that LLT-W provides better fits for glass fibers and Wheaton river data sets as compared to other competing models. More visual comparison of the four best competing distributions are provided in Figures 10 and 11. The fitted densities of the four best models are shown in Figure 10 for glass fibers and Wheaton river data, whereas the estimated distribution functions for four best models are depicted in Figure 11. Further, the hrf plots of the LLT-W distribution for glass fibers and Wheaton river data are illustrated in Figure 12. Based on visual comparison, we can conclude that the LLT-W distribution provides a close fit for glass fibers and Wheaton river data and it can be utilized in fitting data with increasing and modified bathtub hazard rates.

    Figure 10.  Estimated cdfs for the LLT-W model and other competing models (left) for glass fibers and (right) for Wheaton river data.
    Figure 11.  Estimated pdfs for the LLT-W model and other competing models (left) for glass fibers and (right) for Wheaton river data.
    Figure 12.  The hrf plots of the LLT-W model (left) for glass fibers and (right) for Wheaton river data.

    This paper provides a new log-logistic tan generalized (LLT-G) class with three additional shape parameters to capture skewness and kurtosis behavior. Five special models of the LLT-G family are presented by choosing Weibull, normal, Rayleigh, exponential and Burr XII, as baseline distributions in the proposed family, to obtain the LLT-Weibull, LLT-normal, LLT-Rayleigh, LLT-exponential and LLT-Burr XII. The general mathematical properties are obtained for the LLT-G class. The LLT-G parameters estimation is discussed by maximum-likelihood approach and simulation results are obtained to check the performance of these estimators. The importance and flexibility of the LLT-Weibull are checked empirically using two sets of real-life data, proving that it can provide better fit as compared with other competing models, such as odd log-logistic modified-Weibull, odd Dagum-Weibull, odd log logistic exponentiated-Weibull, Weibull-Lomax, Kumaraswamy-Weibull, Kumaraswamy-exponentiated-Burr XII, and beta-Burr XII distributions.

    This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.

    There is no conflict of interest declared by the authors.



    [1] A. Z. Afify, M. Alizadeh, The odd Dagum family of distributions: Properties and applications, J. Appl. Probab. Stat., 15 (2020), 45-72.
    [2] A. Z. Afify, M. Alizadeh, M. Zayed, T. G. Ramires, F. Louzada, The odd log-logistic exponentiated Weibull distribution: Regression modeling, properties, and applications, Iran. J. Sci. Technol. A, 42 (2018), 2273-2288.
    [3] A. Z. Afify, G. M. Cordeiro, M. E. Mead, M. Alizadeh, H. Al-Mofleh, Z. M. Nofal, The generalized odd Lindley-G family: Properties and applications, An. Acad. Bras. Ciênc., 91 (2019), 1-22.
    [4] A. Z. Afify, A. Emrah, M. Alizadeh, G. Ozel, G. G. Hamedani, The odd exponentiated half-logisticG family: Properties, characterizations and applications, Chilean Journal of Statistics, 8 (2017), 65-91.
    [5] M. Alizadeh, M. Emadi, M. Doostparast, G. M. Cordeiro, E. M. Ortega, R. R. Pescim, A new family of distributions: The Kumaraswamy odd log-logistic, properties and applications, Hacet. J. Math. Stat., 44 (2015), 1491-1512.
    [6] M. Alizadeh, S. M. T. K. MirMostafee, E. M. M. Ortega, T. G. Ramires, G. M. Cordeiro, The odd log-logistic logarithmic generated family of distributions with applications in different areas, Journal of Statistical Distributions and Applications, 4 (2017), 1-25. doi: 10.1186/s40488-017-0055-6
    [7] M. Alizadeh, S. Tahmasebi, H. Haghbin, The exponentiated odd log-logistic family of distributions: Properties and applications, Journal of Statistical Modelling: Theory and Applications, 1 (2018), 29-54.
    [8] E. Altun, M. Alizadeh, A. Z. Afify, G. Ozel, The generalized odd half-logistic family of distributions with regression models, International Journal of Statistics & Economics, 20 (2019), 88-110.
    [9] A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron, 71 (2013), 63-79. doi: 10.1007/s40300-013-0007-y
    [10] A. M. Amini, S. M. T. K. MirMostafaee, J. C. Ahmadi, Log-gamma-generated families of distributions, Statistics, 48 (2014), 913-932. doi: 10.1080/02331888.2012.748775
    [11] M. Bourguignon, R. B. Silva, G. M. Cordeiro, The Weibull-G family of probability distributions, Journal of Data Science, 12 (2014), 53-68.
    [12] V. Choulakian, M. A Stephens, Goodness-of-fit tests for the generalized pareto distribution, Technometrics, 43 (2001), 478-484.
    [13] G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. Aryal, The exponentiated Weibull-H family of distributions: Theory and applications, Mediterr. J. Math., 14 (2017), 1-22. doi: 10.1007/s00009-016-0833-2
    [14] G. M. Cordeiro, M. Alizadeh, P. R. D. Marinho, The type I half-logistic family of distributions, J. Stat. Comput. Sim., 86 (2015), 707-728.
    [15] G. M. Cordeiro, M. Alizadeh, G. Ozel, B. Hosseini, E. M. M. Ortega, E. Altun, The generalized odd log-logistic family of distributions: Properties, regression models and applications, J. Stat. Comput. Sim., 87 (2017), 908-932.
    [16] G. M. Cordeiro, M. Alizadeh, M. H. Tahir, M. Mansoor, M. Bourguignon, G. G. Hamedani, The beta odd log-logistic family of distributions, Hacet. J. Math. Stat., 45 (2015), 1175-1202.
    [17] G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Sim., 81 (2011), 883-898.
    [18] G. M. Cordeiro, E. M. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347 (2010), 1399-1429. doi: 10.1016/j.jfranklin.2010.06.010
    [19] N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. Theor. M., 31 (2002), 497-512. doi: 10.1081/STA-120003130
    [20] J. U. Gleaton, J. D. Lynch, Properties of generalized log logistic families of lifetime distributions, Journal of Probability and Statistical Science, 4 (2006), 51-64.
    [21] M. Gouloust, S. Rezaei, M. Alizadeh, Mujtaba, S. Nadaraja, The odd log-logistic power series family of distributions: Properties and applications, Statistica, 79 (2019), 77-107.
    [22] J. A. Greenwood, J. M. Landwehr, N. C. Matalas, J. R. Wallis, Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form, Water Resour. Res., 15 (1979), 1049-1054. doi: 10.1029/WR015i005p01049
    [23] R. C. Gupta, P. I. Gupta, R. D. Gupta, Modeling failure time data by Lehmann alternatives, Communications in Statistics-Theory and methods, 27 (1998), 887-904. doi: 10.1080/03610929808832134
    [24] R. D. Gupta, D. Kundu, Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biometrical J., 43 (2001), 117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
    [25] R. D. Gupta, D. Kundu, Theory & Methods: Generalized exponential distribution, Aust. N. Z. J. Stat., 41 (1999), 173-188. doi: 10.1111/1467-842X.00072
    [26] A. H. Soliman, M. A. E. Agarhy, M. Shakil, Type II half logistic family of distributions with applications, Pakistan Journal of Statistics and Operation Research, 13 (2017), 245-264. doi: 10.18187/pjsor.v13i2.1560
    [27] H. Haghbin, G. Ozel, M. Alizadeh, G. G. Hamedani, A new generalized odd log-logistic family of distributions, J. Commun. Stat. Theor. M., 46 (2017), 9897-9920. doi: 10.1080/03610926.2016.1222428
    [28] M. C. Korkmaz, H. M. Yousof, G. G. Hamedani, The exponential Lindley odd log-logisticG family: Properties, characterizations and applications, Journal of Statistical Theory and Applications, 17 (2018), 554-571.
    [29] M. Akbarinasab, A. R. Arabpour, A. Mahdavi, Truncated log-logistic family of distributions, Journal of Biostatistics and Epidemiology, 5 (2019), 137-147.
    [30] M. E. Mead, A. Z. Afify, On five-parameter burr xii distribution: Properties and applications, South African Statistical Journal, 51 (2017), 67-80.
    [31] G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure data, IEEE T. Reliab., 42 (1993), 299-302. doi: 10.1109/24.229504
    [32] G. S. Mudholkar, A. D. Hutson, The exponentiated Weibull family: Some properties and a flood data application, Commun. Stat. Theor. M., 25 (1996), 3059-3083. doi: 10.1080/03610929608831886
    [33] S. Nadarajah, S. Kotz, The exponentiated type distributions, Acta Appl. Math., 92 (2006), 97-111. doi: 10.1007/s10440-006-9055-0
    [34] S. Nadarajah, A. K. Gupta, The exponentiated gamma distribution with application to drought data, Calcutta Statistical Association Bulletin, 59 (2007), 29-54. doi: 10.1177/0008068320070103
    [35] S. Nadarajah, The exponentiated exponential distribution: A survey, AStA Adv. Stat. Anal., 95 (2011), 219-251. doi: 10.1007/s10182-011-0154-5
    [36] P. F. Paranaiba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescima, The beta Burr XII distribution with application to lifetime data, Comput. Stat. Data An., 55 (2011), 1118-1136. doi: 10.1016/j.csda.2010.09.009
    [37] A. Sabor, M. Alizadeh, M. N. Khan, I. Gosh, G. M. Cordeiro, Odd log-logistic modified Weibull distribution, MeditERR. J. Math., 14 (2017), 1-19. doi: 10.1007/s00009-016-0833-2
    [38] R. L. Smith, J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. R. Appl. Soc. C. Appl., 36 (1987), 358-369.
    [39] M. H. Tahir, G. M. Cordeiro, A. Alzaatreh, M. Zubair, M. Mansoor, The logistic-X family of distributions and its applications, Commun. Stat. Theor. M., 45 (2016), 7326-7349. doi: 10.1080/03610926.2014.980516
    [40] H. Torabi, N. H. Montazari, The logistic-uniform distribution and its application, Commun. Stat. Simul. C., 43 (2014), 2551-2569. doi: 10.1080/03610918.2012.737491
  • This article has been cited by:

    1. Mahmoud EL-Morshedy, Fahad Sameer Alshammari, Abhishek Tyagi, Iberahim Elbatal, Yasser S. Hamed, Mohamed S. Eliwa, Bayesian and Frequentist Inferences on a Type I Half-Logistic Odd Weibull Generator with Applications in Engineering, 2021, 23, 1099-4300, 446, 10.3390/e23040446
    2. Ahmed Z. Afify, Hassan M. Aljohani, Abdulaziz S. Alghamdi, Ahmed M. Gemeay, Abdullah M. Sarg, Barbara Martinucci, A New Two-Parameter Burr-Hatke Distribution: Properties and Bayesian and Non-Bayesian Inference with Applications, 2021, 2021, 2314-4785, 1, 10.1155/2021/1061083
    3. Ahmed Z. Afify, Hazem Al-Mofleh, Hassan M. Aljohani, Gauss M. Cordeiro, The Marshall–Olkin–Weibull-H family: Estimation, simulations, and applications to COVID-19 data, 2022, 34, 10183647, 102115, 10.1016/j.jksus.2022.102115
    4. Nikolay Kyurkchiev, Anton Iliev, Asen Rahnev, Properties and Applications of a Tan–G Family of ”Adaptive Functions”, 2021, 15, 1998-4464, 1292, 10.46300/9106.2021.15.139
    5. Fei Wang, Zubair Ahmad, Faridoon Khan, Eslam Hussam, Abdal-Aziz H El-Bagoury, Huda M. Alshanbari, A new statistical distribution with applications to sports and health sciences, 2022, 61, 11100168, 9661, 10.1016/j.aej.2022.02.062
    6. Thatayaone Moakofi, Broderick Oluyede, Fastel Chipepa, Type II exponentiated half-logistic Topp-Leone Marshall-Olkin-G family of distributions with applications, 2021, 7, 24058440, e08590, 10.1016/j.heliyon.2021.e08590
    7. Yinghui Zhou, Zubair Ahmad, Zahra Almaspoor, Faridoon Khan, Elsayed tag-Eldin, Zahoor Iqbal, Mahmoud El-Morshedy, On the implementation of a new version of the Weibull distribution and machine learning approach to model the COVID-19 data, 2022, 20, 1551-0018, 337, 10.3934/mbe.2023016
    8. Muhammad Arif, Dost Muhammad Khan, Muhammad Aamir, Mahmoud El-Morshedy, Zubair Ahmad, Zardad Khan, A New Flexible Exponentiated-X Family of Distributions: Characterizations and Applications to Lifetime Data, 2022, 0377-2063, 1, 10.1080/03772063.2022.2034537
    9. Mahmoud El-Morshedy, Adel A. El-Faheem, Afrah Al-Bossly, Mohamed El-Dawoody, Exponentiated Generalized Inverted Gompertz Distribution: Properties and Estimation Methods with Applications to Symmetric and Asymmetric Data, 2021, 13, 2073-8994, 1868, 10.3390/sym13101868
    10. Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa, The extended gamma distribution with regression model and applications, 2020, 6, 2473-6988, 2418, 10.3934/math.2021147
    11. Adebisi A. Ogunde, Subhankar Dutta, Ehab M. Almetawally, Half Logistic Generalized Rayleigh Distribution for Modeling Hydrological Data, 2024, 2198-5804, 10.1007/s40745-024-00527-2
    12. Coşkun Kuş, Kadir Karakaya, Caner Tanış, Yunus Akdoğan, Sümeyra Sert, Fahreddin Kalkan, Compound transmuted family of distributions: properties and applications, 2023, 0035-5038, 10.1007/s11587-023-00808-7
    13. Huda M. Alshanbari, Zubair Ahmad, Abd Al-Aziz Hosni El-Bagoury, Omalsad Hamood Odhah, Gadde Srinivasa Rao, A New Modification of the Weibull Distribution: Model, Theory, and Analyzing Engineering Data Sets, 2024, 16, 2073-8994, 611, 10.3390/sym16050611
    14. Hisham Mahran, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify, A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications, 2024, 9, 2473-6988, 11910, 10.3934/math.2024582
    15. Getachew Tekle, Rasool Roozegar, Zubair Ahmad, Alessandro De Gregorio, A New Type 1 Alpha Power Family of Distributions and Modeling Data with Correlation, Overdispersion, and Zero-Inflation in the Health Data Sets, 2023, 2023, 1687-9538, 1, 10.1155/2023/6611108
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(15240) PDF downloads(452) Cited by(14)

Figures and Tables

Figures(12)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog