In the current work, the multi-valued version of well-known theorems of Nadler, Banach, Branciari and Reich are generalized to the scope of double controlled metric space. A double controlled metric space is a metric type space in which the right hand side of the triangle inequality is controlled by two functions. Furthermore, applications to existence of solution to Volterra integral inclusions and singular Fredholm integral inclusions of are obtained.
Citation: Sahibzada Waseem Ahmad, Muhammad Sarwar, Thabet Abdeljawad, Gul Rahmat. Multi-valued versions of Nadler, Banach, Branciari and Reich fixed point theorems in double controlled metric type spaces with applications[J]. AIMS Mathematics, 2021, 6(1): 477-499. doi: 10.3934/math.2021029
In the current work, the multi-valued version of well-known theorems of Nadler, Banach, Branciari and Reich are generalized to the scope of double controlled metric space. A double controlled metric space is a metric type space in which the right hand side of the triangle inequality is controlled by two functions. Furthermore, applications to existence of solution to Volterra integral inclusions and singular Fredholm integral inclusions of are obtained.
[1] | A. Ali, B. Samet, K. Shah, R. A. Khan, Existence and stability of solution to a toppled systems of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), 1-13. doi: 10.1186/s13661-016-0733-1 |
[2] | A. Arikoglu, I. Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl., 56 (2008), 2411-2417. doi: 10.1016/j.camwa.2008.05.017 |
[3] | A. M. Wazwaz, Partial differential equations and solitary waves theory, Beijing: Higher Education, 2009. |
[4] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329. doi: 10.1016/0022-247X(69)90031-6 |
[5] | A. O. Agboladel, A. T. Anake, Solutions of first-order Volterra type linear integrodifferential equations by collocation method, J. Appl. Math., 2017 (2017), 1-5. |
[6] | B. Alqahtani, E. Karapinar, A. Ozturk, On (α, ψ) - K-contractions in the extended b-metric space, Filomat, 32 (2018), 5337-5345. |
[7] | B. Alqahtani, E. Karapinar, F. Khojasteh, On some fixed point results in extended strong b-metric spaces, B. Math. Anal. Appl., 10 (2018), 25-35. |
[8] | B. Alqahtani, A. Fulga, E. Karapinar, Common fixed point results on extended b-metric space, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6 |
[9] | B. Alqahtani, A. Fulga, E. Karapinar, Non-unique fixed point results in extended B-metric space, Mathematics, 6 (2018), 1-11. |
[10] | B. E. Rhoades, A comparison of various definations of contractive mappings, T. Am. Math. Soc., 226 (1977), 257-290. doi: 10.1090/S0002-9947-1977-0433430-4 |
[11] | B. Hazarika, E. Karapinar, R. Arab, M. Rabbani, Metric-like spaces to prove existence of solution for nonlinear quadratic integral equation and numerical method to solve it, J. Comput. Appl. Math., 328 (2018), 302-313. doi: 10.1016/j.cam.2017.07.012 |
[12] | D. W. Boyd, J. S. W. Wong, On nonlinear contraction, P. Am. Math. Soc., 20 (1969), 458-464. |
[13] | E. Karapınar, S. K. Panda, D. Lateef, A new approach to the solution of Fredholm integral equation via fixed point on extended b-metric spaces, Symmetry, 10 (2018), 1-13. |
[14] | E. Rakotch, A note on contractive mappings, P. Am. Math. Soc., 13 (1962), 459-465. doi: 10.1090/S0002-9939-1962-0148046-1 |
[15] | E. Zeidler, Nonlinear functional analysis and its applications I: fixed-point theorems, New York: Springer-Verlag, 1986. |
[16] | H. Afshari, H. H. Alsulami, E. Karapinar, On the extended multivalued Geraghty type contractions, J. Nonlinear Sci. Appl., 9 (2016), 4695-4706. doi: 10.22436/jnsa.009.06.108 |
[17] | H. Aydi, E. Karapinar, H. Yazid, Modified F-contractions via α-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141-1148. doi: 10.2298/FIL1705141A |
[18] | H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fix. Point Theory A., 18 (2015), 251-266. |
[19] | H. H. Alsulami, E. Karapınar, H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct. Space., 2015 (2015), 1-9. |
[20] | H. H. Alsulami, E. Karapınar, H. Piri, Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces, Discrete Dyn. Nat. Soc., 2015 (2015), 1-8. |
[21] | H. H. Aluslami, S. Gulyaz, E. Karapinar, I. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Math., 14 (2016), 1087-1103. doi: 10.1515/math-2016-0097 |
[22] | H. Poincare, Sur les courbes définies par les équations différentielles (IV), J. Math. Pure. Appl., 2 (1886), 151-218. |
[23] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37. |
[24] | K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann., 142 (1961), 305-310. doi: 10.1007/BF01353421 |
[25] | K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge: Cambridge University Press, 1990. |
[26] | K. G. TeBeest, Classroom Note: numerical and analytical solutions of Volterra's population model, SIAM Rev., 39 (1997), 484-493. doi: 10.1137/S0036144595294850 |
[27] | L. B. Ciric, A generalization of Banach's contraction principle, P. Am. Math. Soc. 45 (1974), 267-273. |
[28] | L. E. J. Brouwer, Uber abbildungen von mannigfaltigkeiten, Math. Ann., 71 (1912), 97-115. |
[29] | M. Abbas, M. Berzig, T. Nazir, E. Karapınar, Iterative approximation of fixed points for Presic type f-contraction operators, U. P. B. Sci. Bull. Series A, 78 (2016), 147-160. |
[30] | M. A. Khamsi, W. A. Kirk, An introduction to metric spaces and fixed point theory, New York: Wiley-Interscience, 2001. |
[31] | M. I. Berenguer, M. V. F. Munoz, A. I. G. Guillem, M. R. Galan, Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation, Fixed Point Theory A., 2009 (2009), 1-8. |
[32] | M. Samreen, T. Kamran, M. Postolache, Extended b-metric space, extended b-comparison function and non-linear contraction, U. Politeh. Buch. Ser. A, 80 (2018), 21-28. |
[33] | M. Geraghty, On contraction mappings, P. Am. Math. Soc., 40 (1973), 604-608. |
[34] | N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177-188. doi: 10.1016/0022-247X(89)90214-X |
[35] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 1-7. |
[36] | Q. H. Ansari, Metric Spaces: including fixed point theory and set-valued maps, Oxford: Alpha Science International Ltd, 2010. |
[37] | Q. H. Ansari, Topics in nonlinear analysis and optimization, Delhi: World Education, 2012. |
[38] | R. D. Small, Population growth in a closed model, in mathematical modelling: classroom notes in applied mathematics, SIAM Rev., 39 (1997), 484-493. |
[39] | R. P. Agarwal, Contraction and approximate contraction with an application to multi-point boundary value problems, J. Comput. Appl. Math., 9 (1983), 315-325. doi: 10.1016/0377-0427(83)90003-1 |
[40] | R. P. Agarwal, Ü. Aksoy, E. Karapınar, I. M. Erhan, F-contraction mappings on metric-like spaces in connection with integral equations on time scales, RACSAM, 114 (2020), 147. doi: 10.1007/s13398-020-00877-5 |
[41] | S. Abbasbandy, Numerical solutions of the integral equations: homotopy perturbation method and Adomian's decomposition method, Appl. Math. Comput., 173 (2006), 493-500. |
[42] | S. Abbasbandy, E. Shivanian, A new analytical technique to solve Fredholm's integral equations, Numer. Algorithms, 56 (2011), 27-43. doi: 10.1007/s11075-010-9372-2 |
[43] | S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[44] | S. B. Nadler Jr., Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475-488. |
[45] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5-11. |
[46] | S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos Soliton. Fractal., 130 (2020), 1-11. |
[47] | S. A. Khuri, A. M. Wazwaz, The decomposition method for solving a second Fredholm second kind integral equation with a logarithmic kernel, Int. J. Comput. Math., 61 (1996), 103-110. doi: 10.1080/00207169608804502 |
[48] | S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26-42. |
[49] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 1-10. |
[50] | T. Abdeljawad, R. P. Agarawal, E. Karapinar, S. K. Panda, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed foint with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 1-18. |
[51] | T. Kamran, M. Samreen, Q. UL Ain, A Generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 1-7. |
[52] | W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277 (2003), 645-650. doi: 10.1016/S0022-247X(02)00612-1 |
[53] | Y. Feing, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103-112. doi: 10.1016/j.jmaa.2005.12.004 |
[54] | Y. Guo, X. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < β < 2, Bound. Value Probl., 2019 (2019), 1-18. doi: 10.1186/s13661-018-1115-7 |