Citation: Kaifang Liu, Lunji Song. A family of interior-penalized weak Galerkin methods for second-order elliptic equations[J]. AIMS Mathematics, 2021, 6(1): 500-517. doi: 10.3934/math.2021030
[1] | D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, vol. 44, SpringerVerlag, Berlin, 2013. |
[2] | S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, third ed., 2008. |
[3] | S. Chai, Y. Zou, W. Zhao, A weak Galerkin method for C0 element for forth order linear parabolic equation, Adv. Appl. Math. Mech., 11 (2019), 467-485. doi: 10.4208/aamm.OA-2018-0028 |
[4] | W. Chen, F. Wang, Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 36 (2016), 897-921. doi: 10.1093/imanum/drv012 |
[5] | A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, Springer New York, 2004. |
[6] | C. Geuzaine, J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Eng., 79 (2009), 1309-1331. doi: 10.1002/nme.2579 |
[7] | Q. Li and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Meth. Part. D. E., 6 (2013), 2004-2024. |
[8] | G. Lin, J. Liu, L. Mu, X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437. doi: 10.1016/j.jcp.2014.07.001 |
[9] | K. Liu, L. Song, S. Zhao, A new over-penalized weak Galerkin method. Part I: second-order elliptic problems, Discret. Contin. Dyn. Syst. - B, 22 (2017). |
[10] | K. Liu, L. Song, S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880. doi: 10.4208/jcm.1705-m2016-0744 |
[11] | L. Mu, J. Wang, G. Wei, X. Ye, S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125. doi: 10.1016/j.jcp.2013.04.042 |
[12] | L. Mu, J. Wang, X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255. doi: 10.1093/imanum/dru026 |
[13] | L. Mu, J. Wang, X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58. doi: 10.1016/j.cam.2015.02.001 |
[14] | L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53. |
[15] | L. Mu, J. Wang, X. Ye, A least-squares-based weak Galerkin finite element method for second order elliptic equations, SIAM J. Sci. Comput., 39 (2017), A1531-A1557. |
[16] | L. Mu, J. Wang, X. Ye, S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 64 (2015), 363-386. |
[17] | L. Mu, J. Wang, X. Ye, S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173. doi: 10.1016/j.jcp.2016.08.024 |
[18] | B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Frontiers in Applied Mathematics, SIAM, 2008. |
[19] | S. Shields, J. Li, E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. with Appl., 74 (2017), 2106-2124. doi: 10.1016/j.camwa.2017.07.047 |
[20] | L. Song, K. Liu, S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218. doi: 10.1007/s10915-016-0296-4 |
[21] | L. Song, S. Zhao, K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80. doi: 10.1016/j.apnum.2018.01.021 |
[22] | C. Wang, New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods, J. Comput. Appl. Math., 341 (2018), 127-143. doi: 10.1016/j.cam.2018.04.015 |
[23] | C. Wang, J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. with Appl., 68 (2014), 2314-2330. doi: 10.1016/j.camwa.2014.03.021 |
[24] | C. Wang, J. Wang, R. Wang, R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366. doi: 10.1016/j.cam.2015.12.015 |
[25] | J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115. doi: 10.1016/j.cam.2012.10.003 |
[26] | J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4 |
[27] | J. Wang, X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174. doi: 10.1007/s10444-015-9415-2 |
[28] | R. Wang, X. Wang, Q. Zhai, K. Zhang, A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers, Numer. Meth. Part. D. E., 34 (2018), 1009-1032. doi: 10.1002/num.22242 |
[29] | R. Wang, R. Zhang, X. Zhang, Z. Zhang, Supercloseness analysis and polynomial preserving Recovery for a class of weak Galerkin Methods, Numer. Meth. Part. D. E., 34 (2018), 317-335. doi: 10.1002/num.22201 |
[30] | X. Wang, N. S. Malluwawadu, F. Gao, T. C. McMillan, A modified weak Galerkin finite element method, J. Comput. Appl. Math., 271 (2014), 319-327. doi: 10.1016/j.cam.2014.04.014 |
[31] | X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), 112699. |
[32] | Q. Zhai, X. Ye, R. Wang, R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. with Appl., 74 (2017), 2243-2252. doi: 10.1016/j.camwa.2017.07.009 |
[33] | H. Zhu, Y. Zou, S. Chai, C. Zhou, Numerical approximation to a stochastic parabolic PDE with weak Galerkin method, Numer. Math. Theory Methods Appl., 11 (2018), 604-617. doi: 10.4208/nmtma.2017-OA-0122 |
[34] | H. Zhu, Y. Zou, S. Chai, C. Zhou, A weak Galerkin method with RT elements for a stochastic parabolic differential equation, East Asian J. Appl. Math., 9 (2019), 818-830. |