Research article

Existence of a unique solution to an elliptic partial differential equation when the average value is known

  • Received: 08 October 2020 Accepted: 11 October 2020 Published: 19 October 2020
  • MSC : 35A01

  • The purpose of this paper is to prove the existence of a unique classical solution $u(\bf{x})$ to the quasilinear elliptic partial differential equation $\nabla \cdot(a(u) \nabla u) = f$ for $\bf{x} \in \Omega$, which satisfies the condition that the average value $\frac{1}{|\Omega|}\int_{\Omega} u d\bf{x} = u_0$, where $u_0$ is a given constant and $\frac{1}{|\Omega|}\int_{\Omega} f d\bf{x} = 0$. Periodic boundary conditions will be used. That is, we choose for our spatial domain the N-dimensional torus $\mathbb{T}^N$, where $N = 2$ or $N = 3$. The key to the proof lies in obtaining a priori estimates for $u$.

    Citation: Diane Denny. Existence of a unique solution to an elliptic partial differential equation when the average value is known[J]. AIMS Mathematics, 2021, 6(1): 518-531. doi: 10.3934/math.2021031

    Related Papers:

  • The purpose of this paper is to prove the existence of a unique classical solution $u(\bf{x})$ to the quasilinear elliptic partial differential equation $\nabla \cdot(a(u) \nabla u) = f$ for $\bf{x} \in \Omega$, which satisfies the condition that the average value $\frac{1}{|\Omega|}\int_{\Omega} u d\bf{x} = u_0$, where $u_0$ is a given constant and $\frac{1}{|\Omega|}\int_{\Omega} f d\bf{x} = 0$. Periodic boundary conditions will be used. That is, we choose for our spatial domain the N-dimensional torus $\mathbb{T}^N$, where $N = 2$ or $N = 3$. The key to the proof lies in obtaining a priori estimates for $u$.


    加载中


    [1] D. Denny, Existence of a unique solution to a quasilinear elliptic equation, J. Math. Anal. Appl., 380 (2011), 653-668. doi: 10.1016/j.jmaa.2011.03.046
    [2] P. Embid, On the Reactive and Non-diffusive Equations for Zero Mach Number Flow, Commun. Part. Differ. Eq., 14 (1989), 1249-1281. doi: 10.1080/03605308908820652
    [3] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island, 1998.
    [4] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, 1983.
    [5] S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524. doi: 10.1002/cpa.3160340405
    [6] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag: New York, 1984.
    [7] J. Moser, A rapidly convergent iteration method and non-linear differential equations, Ann. Scuola Norm. Sup., Pisa, 20 (1966), 265-315.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3877) PDF downloads(184) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog