Research article

Existence and asymptotic behavior of normalized solutions for the modified Kirchhoff equations in $ \mathbb{R}^3 $

  • Received: 01 October 2021 Revised: 27 January 2022 Accepted: 07 February 2022 Published: 04 March 2022
  • MSC : 35B38, 35B40, 35J62

  • This paper is concerned with the following modified Kirchhoff type problem

    $ \begin{align*} -\left(a+b\int_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u-u\Delta (u^2)-\lambda u=|u|^{p-2}u, \; \; \; x\in \mathbb{R}^3, \end{align*} $

    where $ a, b > 0 $ are constants and $ \lambda\in \mathbb R $. When $ p=\frac{16}{3} $, we prove that the existence of normalized solution with a prescribed $ L^2 $-norm for the above equation by applying constrained minimization method. Moreover, when $ p\in\left(\frac{10}{3}, \frac{16}{3}\right) $, we prove the existence of mountain pass type normalized solution for the above modified Kirchhoff equation by using the perturbation method. And the asymptotic behavior of normalized solution as $ b\rightarrow 0 $ is analyzed. These conclusions extend some known ones in previous papers.

    Citation: Zhongxiang Wang. Existence and asymptotic behavior of normalized solutions for the modified Kirchhoff equations in $ \mathbb{R}^3 $[J]. AIMS Mathematics, 2022, 7(5): 8774-8801. doi: 10.3934/math.2022490

    Related Papers:

  • This paper is concerned with the following modified Kirchhoff type problem

    $ \begin{align*} -\left(a+b\int_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u-u\Delta (u^2)-\lambda u=|u|^{p-2}u, \; \; \; x\in \mathbb{R}^3, \end{align*} $

    where $ a, b > 0 $ are constants and $ \lambda\in \mathbb R $. When $ p=\frac{16}{3} $, we prove that the existence of normalized solution with a prescribed $ L^2 $-norm for the above equation by applying constrained minimization method. Moreover, when $ p\in\left(\frac{10}{3}, \frac{16}{3}\right) $, we prove the existence of mountain pass type normalized solution for the above modified Kirchhoff equation by using the perturbation method. And the asymptotic behavior of normalized solution as $ b\rightarrow 0 $ is analyzed. These conclusions extend some known ones in previous papers.



    加载中


    [1] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
    [2] S. Bernstein, Sur une classe d'$\acute{e}$quations fonctionelles aux d$\acute{e}$riv$\acute{e}$es partielles, Bull. Acad. Sci. URSS. S$\acute{e}$r. Math. (Izvestia Akad. Nauk SSSR), 4 (1940), 17–26.
    [3] S. I. Poho$\check{z}$aev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 96 (1975), 152–166. https://doi.org/10.1136/vr.96.8.166 doi: 10.1136/vr.96.8.166
    [4] J. L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), In: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3
    [5] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. , 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2 doi: 10.1090/S0002-9947-96-01532-2
    [6] G. B. Li, C. L. Xiang, Nondegeneracy of positive solutions to a Kirchhoff problem with critical Sobolev growth, Appl. Math. Lett. , 86 (2018), 270–275. https://doi.org/10.1016/j.aml.2018.07.010 doi: 10.1016/j.aml.2018.07.010
    [7] S. S. Lu, An autonomous Kirchhoff-type equation with general nonlinearity in $\mathbb{R}^N$, Nonlinear Anal. RWA, 34 (2017), 233–249. https://doi.org/10.1016/j.nonrwa.2016.09.003 doi: 10.1016/j.nonrwa.2016.09.003
    [8] Q. L. Xie, Singular perturbed Kirchhoff type problem with critical exponent, J. Math. Anal. Appl. , 454 (2017), 144–180. https://doi.org/10.1016/j.jmaa.2017.04.048 doi: 10.1016/j.jmaa.2017.04.048
    [9] C. Vetro, Variable exponent p(x)-Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022). https://doi.org/10.1016/j.jmaa.2021.125721
    [10] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. , 94 (2014), 156–170. https://doi.org/10.1016/j.na.2013.08.011 doi: 10.1016/j.na.2013.08.011
    [11] M. Q. Xiang, Vicenţiu D. R$\check{a}$dulescu, B. L. Zhang, Nonlocal Kirchhoff problems with singular exponential nonlinearity, Appl. Math. Optim. , 84 (2021), 915–954. https://doi.org/10.1007/s00245-020-09666-3 doi: 10.1007/s00245-020-09666-3
    [12] M. V. Goldman, M. Porkolab, Upper hybrid solitons ans oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872–881. https://doi.org/10.1063/1.861553 doi: 10.1063/1.861553
    [13] R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83–87. https://doi.org/10.1159/000225502 doi: 10.1159/000225502
    [14] M. Colin, L. Jeanjean, Solutions for quasilinear Schrödinger equation: a dual approach, Nonlinear Anal. , 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008
    [15] M. Colin, L. Jeanjean, M. Squassina, Stability and instability results for standing waves of quasilinear Schrödinger equations, Nonlinearity, 23 (2010), 1353–1385. https://doi.org/10.1088/0951-7715/23/6/006 doi: 10.1088/0951-7715/23/6/006
    [16] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differential Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5
    [17] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879–901. https://doi.org/10.1081/PDE-120037335 doi: 10.1081/PDE-120037335
    [18] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. Partial Differential Equations, 39 (2014), 2216–2239. https://doi.org/10.1080/03605302.2014.942738 doi: 10.1080/03605302.2014.942738
    [19] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc. , 141 (2013), 253–263. https://doi.org/10.1090/S0002-9939-2012-11293-6 doi: 10.1090/S0002-9939-2012-11293-6
    [20] C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger ellitic equations, J. Math. Anal. Appl. , 472 (2019), 705–727.
    [21] V. Moroz, J. van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773–813. https://doi.org/10.1007/s11784-016-0373-1 doi: 10.1007/s11784-016-0373-1
    [22] J. K. Xia, Z. Q. Wang, Saddle solutions for the Choquard equation, Calc. Var. Partial Differ. Equ., 58 (2019), 85. https://doi.org/10.1007/s00526-019-1546-8 doi: 10.1007/s00526-019-1546-8
    [23] D. D. Qin, Vicenţiu D. R$\check{a}$dulescu, X. H. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations, 275 (2021), 652–683. https://doi.org/10.1016/j.jde.2020.11.021 doi: 10.1016/j.jde.2020.11.021
    [24] B. B. V. Maia, On a class of p(x)-Choquard equations with sign-changing potential and upper critical growth, Rend. Circ. Mat. Palermo (2) Suppl., 70 (2021), 1175–1199. https://doi.org/10.1007/s12215-020-00553-y doi: 10.1007/s12215-020-00553-y
    [25] Z. H. Feng, X. Wu, H. X. Li, Multiple solutions for a modified Kirchhoff-type equation in $\mathbb{R}^{N}$, Math. Methods Appl. Sci., 38 (2015), 708–725. https://doi.org/10.1002/mma.3102 doi: 10.1002/mma.3102
    [26] K. Wu, X. Wu, Infinitely many small energy solutions for a modified Kirchhoff-type equation in $\mathbb{R}^N$, Comput. Math. Appl., 70 (2015), 592–602. https://doi.org/10.1016/j.camwa.2015.05.014 doi: 10.1016/j.camwa.2015.05.014
    [27] X. M. He, Multiplicity of Solutions for a Modified Schrödinger-Kirchhoff-Type Equation in $\mathbb{R}^N$, Discrete Dyn. Nat. Soc., 2015 (2015).
    [28] Z. X. Wang, G. Jia, Existence of solutions for modified Kirchhoff-type equation without the Ambrosetti-Rabinowitz condition, AIMS Math., 6 (2021), 4614–4637. https://doi.org/10.3934/math.2021272 doi: 10.3934/math.2021272
    [29] L. Jeanjean, T. J. Luo, Sharp non-existence results of prescribed $L^2$-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937–954. https://doi.org/10.1007/s00033-012-0272-2 doi: 10.1007/s00033-012-0272-2
    [30] C. Huang, G. Jia, Infinitely many sign-changing solutions for modified Kirchhoff-type equations in $\mathbb{R}^3$, Complex Var Elliptic Equ., 66 (2021), 2090–2116. https://doi.org/10.1080/17476933.2020.1807964 doi: 10.1080/17476933.2020.1807964
    [31] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567–576. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265
    [32] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [33] T. Bartsch, S. De Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math., 100 (2013), 75–83. https://doi.org/10.1007/s00013-012-0468-x doi: 10.1007/s00013-012-0468-x
    [34] H. Berestycki, P. L. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347–375. https://doi.org/10.1007/BF00250556 doi: 10.1007/BF00250556
    [35] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, New York, 2003.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1802) PDF downloads(137) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog