Research article Special Issues

New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals

  • Recently, several papers related to integral inequalities involving various fractional integral operators have been presented. In this work, motivated essentially by the previous works, we prove some new Polya-Szegö inequalities via conformable fractional integral operator and use them to prove some new fractional Chebyshev type inequalities concerning the integral of the product of two functions and the product of two integrals which are improvement of the results in the paper [Ntouyas, S.K., Agarwal, P. and Tariboon, J., On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal (see [9])].

    Citation: Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel. New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals[J]. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066

    Related Papers:

    [1] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [2] Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390
    [3] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [4] Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed . On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics, 2021, 6(9): 9154-9176. doi: 10.3934/math.2021532
    [5] Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz . On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities. AIMS Mathematics, 2022, 7(6): 10256-10275. doi: 10.3934/math.2022571
    [6] Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch . New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Mathematics, 2021, 6(5): 4507-4525. doi: 10.3934/math.2021267
    [7] Erhan Set, Ahmet Ocak Akdemir, Abdurrahman Gözpınar, Fahd Jarad . Ostrowski type inequalities via new fractional conformable integrals. AIMS Mathematics, 2019, 4(6): 1684-1697. doi: 10.3934/math.2019.6.1684
    [8] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [9] Fuat Usta, Hüseyin Budak, Mehmet Zeki Sarıkaya . Some new Chebyshev type inequalities utilizing generalized fractional integral operators. AIMS Mathematics, 2020, 5(2): 1147-1161. doi: 10.3934/math.2020079
    [10] Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392
  • Recently, several papers related to integral inequalities involving various fractional integral operators have been presented. In this work, motivated essentially by the previous works, we prove some new Polya-Szegö inequalities via conformable fractional integral operator and use them to prove some new fractional Chebyshev type inequalities concerning the integral of the product of two functions and the product of two integrals which are improvement of the results in the paper [Ntouyas, S.K., Agarwal, P. and Tariboon, J., On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal (see [9])].


    This article is based on the well known Chebyshev functional [1]:

    T(f,g)=1babaf(x)g(x)dx(1babaf(x)dx)(1babag(x)dx) (1.1)

    where f ve g are two integrable functions which are synchronous on [a,b], i.e.

    (f(x)f(y))(g(x)g(y))0

    for any x,y[a,b], then the Chebyshev inequality states that T(f,g)0.

    The functional (1.1) has attracted many researchers attention due to diverse applications in numerical quadrature, transform theory, probability and statistical problems. Among those applications, the functional (1.1) has also been employed to yield a number of integral inequalities. For some recent counterparts, generalizations of Chebyshev inequality, the reader may refer to [2,3,9] and [10].

    Another important inequality which will be useful to prove our main results is Pólya and Szegö inequality: (see [4])

    baf2(x)dxbag2(x)dx(baf(x)g(x)dx)214(MNmn+mnMN)2

    In [5], Dragomir and Diamond obtained the following Grüss type inequality by using the Pólya-Szegö inequality:

    Theorem 1.1. Let f,g:[a,b]R+ be two integrable functions so that

    0<mf(x)M<0<ng(x)N<

    for x[a,b]. Then we have

    |T(f,g;a,b)|=14(Mm)(Nn)mnMN(1babaf(x)dx)(1babag(x)dx) (1.2)

    The constant 14 is best possible in (1.2) in the sense it can not be replaced by a smaller constant.

    Let us recall some well-known concepts. We note that the beta function B(α,β) is defined (see [11])

    B(α,β)={10tα1(1t)β1dt       (R(α),R(β)>0)Γ(α)Γ(β)Γ(α+β)                         (α,βCZ0)

    where Γ is the familiar Gamma function. Here and in the following, let C,R,R+ and Z0 be the sets of complex numbers, real numbers, positive real numbers and non-positive integers, respectively and let R+0=R+{0}.

    Definition 1.1. (See [6,7]) Let fL[a,b]. The Riemann-Liouville integrals Jαa+f and Jαbf of order α>0 with a0 are defined by

    (Jαa+f)(x)=1Γ(α)xa(xt)α1f(t)dt      (x>a), (1.3)

    and

    (Jαbf)(x)=1Γ(α)bx(tx)α1f(t)dt      (x<b), (1.4)

    where Γ(α)=0exxα1dx is the Gamma function.

    Definition 1.2. (See [8]) Let α(n,n+1], n=0,1,2,... and set β=αn. Then the left conformable fractional integral of order α>0 is defined by

    Iaαf(t)=1n!ta(tx)n(xa)β1f(x)dx,   t>a, (1.5)

    the right conformable fractional integral of order α>0 is defined by

    bIαf(x)=1n!bt(xt)n(bx)β1f(x)dx,   t<b. (1.6)

    Notice that if α=n+1 then β=αn=n+1n=1 and hence (Iaαf)(t)=(Jan+1f)(t).

    Several recent results related to different kinds of fractional integral operators can be found in [12,13,14,15,16,17,18,19,20,21,22,23,24].

    The main aim of this present paper is to prove certain new Pólya-Szeg ö and Chebyshev types integral inequalities involving conformable fractional integral operator. We also give some special cases of our results.

    In this section, we establish certain Pólya-Szegö type integral inequalities for positive integral functions involving conformable fractional integral operator.

    Lemma 2.1. Let f and g be two positive integrable functions on [0,). Also let α(n,n+1], n=0,1,2,..., set β=αn. Assume that there exist four positive integrable functions v1,v2,w1 and w2 such that:

    0<v1(τ)f(τ)v2(τ),0<w1(τ)g(τ)w2(τ)(τ[0,x],x>0) (2.1)

    Then the following inequality holds:

    I0α{w1w2f2}(x)I0α{v1v2g2}(x)(I0α{(v1w1+v2w2)fg}(x))214. (2.2)

    Proof. From (2.1), for τ[0,x], x>0, we can write

    (v2(τ)w1(τ)f(τ)g(τ))0 (2.3)

    and

    (f(τ)g(τ)v1(τ)w2(τ))0 (2.4)

    multiplying (2.3) and (2.4), we get

    (v2(τ)w1(τ)f(τ)g(τ))(f(τ)g(τ)v1(τ)w2(τ))0.

    From the above inequality, we can write

    (v1(τ)w1(τ)+v2(τ)w2(τ))f(τ)g(τ)w1(τ)w2(τ)f2(τ)+v1(τ)v2(τ)g2(τ). (2.5)

    Multiplying both sides of (2.5) by 1n!(xτ)nταn1 and integrating the resulting inequality with respect to τ over (0,x), we get

    I0α{(v1w1+v2w2)fg}(x)I0α{w1w2f2}(x)+I0α{v1v2g2}(x) (2.6)

    applying the AM-GM inequality, i.e. (a+b2ab, a,bR+), we have

    I0α{(v1w1+v2w2)fg}(x)2I0α{w1w2f2}(x)+I0α{v1v2g2}(x)

    which implies that

    I0α{w1w2f2}(x)+I0α{v1v2g2}(x)14(I0α{(v1w1+v2w2)fg}(x))2.

    So, we get the desired result.

    Corollary 2.1. If v1=m, v2=M, w1=n and w2=N, then we have

    (I0αf2)(x)(I0αg2)(x)((I0αfg)(x))214(mnMN+MNmn)2.

    Lemma 2.2. Let f and g be two positive integrable functions on [0,). Also let α(n,n+1], θ(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:

    I0α{v1v2}(x)I0θ{w1w2}(x)×I0α{f2}(x)I0θ{g2}(x)14(I0α{v1f}(x)I0θ{w1g}(x)+I0α{v2f}(x)I0θ{w2g}(x))2 (2.7)

    Proof. From (2.1), we get

    (v2(τ)w1(ξ)f(τ)g(ξ))0

    and

    (f(τ)g(ξ)v1(τ)w2(ξ))0

    which leads to

    (v1(τ)w2(ξ)+v2(τ)w1(ξ))f(τ)g(ξ)f2(τ)g2(ξ)+v1(τ)v2(τ)w1(ξ)w2(ξ). (2.8)

    Multiplying both sides of (2.8) by w1(ξ)w2(ξ)g2(ξ), we have

    v1(τ)f(τ)w1(ξ)g(ξ)+v2(τ)f(τ)w2(ξ)g(ξ)w1(ξ)w2(ξ)f2(τ)+v1(τ)v2(τ)g2(ξ). (2.9)

    Multiplying both sides (2.9) by (1n!)(1k!)(xτ)n(xξ)kταn1ξθk1and integrating the resulting inequality with respect to τ and ξ over (0,x)2, we get

    I0α{v1f}(x)I0θ{w1g}(x)+I0α{v2f}(x)I0θ{w2g}(x)I0α{f2}(x)I0θ{w1w2}(x)+I0α{v1v2}(x)I0θ{g2}(x).

    Applying the AM-GM inequality, we obtain

    I0α{v1f}(x)I0θ{w1g}(x)+I0α{v2f}(x)I0θ{w2g}(x)2I0α{f2}(x)I0θ{w1w2}(x)×I0α{v1v2}(x)I0θ{g2}(x)

    which leads to the desired inequality in (2.7). The proof is completed.

    Corollary 2.2. If v1=m, v2=M, w1=n and w2=N, then we have

    xα+θΓ(αn)Γ(θk)Γ(α+1)Γ(θ+1)×(I0αf2)(x)(I0θg2)(x)((I0αf)(x)(I0θg)(x))214(mnMN+MNmn)2

    Lemma 2.3. Let f and g be two positive integrable functions on [0,). Also let α(n,n+1], θ(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:

    I0α{f2}(x)I0θ{g2}(x)I0α{v2fgw1}(x)I0θ{w2fgw1}(x). (2.10)

    Proof. Using the condition (2.1), we get

    f2(τ)v2(τ)w1(τ)f(τ)g(τ). (2.11)

    Multiplying both sides of (2.11) by (1n!)(xτ)nταn1and integrating the resulting inequality with respect to τ over (0,x), we obtain

    1n!x0(xτ)nταn1f2(τ)dτ1n!x0(xτ)nταn1v2(τ)w1(τ)f(τ)g(τ)dτ

    which leads to

    I0α{f2}(x)I0α{v2fgw1}(x). (2.12)

    Similarly, we can write

    g2(ξ)w2(ξ)v1(ξ)f(ξ)g(ξ).

    By a similar argument, we have

    1k!x0(xξ)nξθn1g2(ξ)dξ1k!x0(xξ)nξθn1w2(ξ)v1(ξ)f(ξ)g(ξ)dξ

    which implies

    I0θ{g2}(x)I0θ{w2fgv1}(x). (2.13)

    Multiplying (2.12) and (2.13), we get the (2.10). The proof is completed.

    Corollary 2.3. If v1=m, v2=M, w1=n and w2=N, then we have

    (I0αf2)(x)(I0θg2)(x)((I0αfg)(x)(I0θfg)(x))2MNmn

    Theorem 2.1. Let f and g be two positive integrable functions on [0,). Also let α(n,n+1], θ(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:

    |(xαΓ(αn)Γ(α+1))(I0θfg)(x)+(xθΓ(θk)Γ(θ+1))(I0αfg)(x)(I0αf)(x)(I0θg)(x)(I0θf)(x)(I0αg)(x)||A1(f,v1,v2)(x)+A2(f,v1,v2)(x)|1/2×|A1(g,w1,w2)(x)+A2(f,w1,w2)(x)|1/2 (2.14)

    where

    A1(u,v,w)(x)=(xθΓ(θk)Γ(θ+1))×(I0α{(v+w)u}(x))24I0α{vw}(x)(I0αu)(x)(I0θu)(x)

    and

    A2(u,v,w)(x)=(xαΓ(αn)Γ(α+1))×(I0θ{(v+w)u}(x))24I0θ{vw}(x)(I0αu)(x)(I0θu)(x).

    Proof. Let f and g be two positive integrable functions on [0,). For τ,ξ(0,x) with x>0, we define H(τ,ξ) as

    H(τ,ξ)=(f(τ)f(ξ))(g(τ)g(ξ))

    namely

    H(τ,ξ)=f(τ)g(τ)+f(ξ)g(ξ)f(τ)g(ξ)f(ξ)g(τ). (2.15)

    Multiplying both sides of (2.15) by

    (1n!)(1k!)(xτ)n(xξ)kταn1ξθk1

    and double integrating the resulting inequality with respect to τ and ξ over (0,x)2, we get

    (1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1H(τ,ξ)dτdξ=(xθΓ(θk)Γ(θ+1))(I0αfg)(x)+(xαΓ(αn)Γ(α+1))(I0θfg)(x)(I0αf)(x)(I0θg)(x)(I0θf)(x)(I0αg)(x).

    Applying the Cauchy-Schwarz inequality for double integrals, we can write

    |(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1H(τ,ξ)dτdξ|[(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1f2(τ)dτdξ+(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1f2(ξ)dτdξ2(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1f(τ)f(ξ)dτdξ]1/2×[(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1g2(τ)dτdξ+(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1g2(ξ)dτdξ2(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1g(τ)g(ξ)dτdξ]1/2

    As a consequence

    |(1n!)(1k!)x0x0(xτ)n(xξ)kταn1ξθk1H(τ,ξ)dτdξ|[(xθΓ(θk)Γ(θ+1))(I0αf2)(x)+(xαΓ(αn)Γ(α+1))(I0θf2)(x)2(I0αf)(x)(I0θf)(x)]1/2×[(xθΓ(θk)Γ(θ+1))(I0αg2)(x)+(xαΓ(αn)Γ(α+1))(I0θg2)(x)2(I0αg)(x)(I0θg)(x)]1/2

    Applying Lemma 2.1 with w1(τ)=w2(τ)=g(τ)=1, we get

    (xθΓ(θk)Γ(θ+1))I0α{f2}(x)(xθΓ(θk)Γ(θ+1))(I0α{(v1+v2)f}(x))24I0α{v1v2}(x).

    This implies that

    (xθΓ(θk)Γ(θ+1))I0α{f2}(x)(I0αf)(x)(I0θf)(x)(xθΓ(θk)Γ(θ+1))(I0α{(v1+v2)f}(x))24I0α{v1v2}(x)(I0αf)(x)(I0θf)(x)=A1(f,v1,v2) (2.16)

    and

    (xαΓ(αn)Γ(α+1))I0θ{f2}(x)(I0αf)(x)(I0θf)(x)(xαΓ(αn)Γ(α+1))(I0θ{(v1+v2)f}(x))24I0θ{v1v2}(x)(I0αf)(x)(I0θf)(x)=A2(f,v1,v2). (2.17)

    Similarly, applying Lemma 2.1 with v1(τ)=v2(τ)=f(τ)=1, we have

    (xθΓ(θk)Γ(θ+1))I0α{g2}(x)(I0αg)(x)(I0θg)(x)A1(g,w1,w2) (2.18)

    and

    (xαΓ(αn)Γ(α+1))I0θ{g2}(x)(I0αg)(x)(I0θg)(x)A2(g,w1,w2). (2.19)

    Using (2.16)-(2.19), we conclude the result.

    Theorem 2.2. Let f and g be two positive integrable functions on [0,). Also let α(n,n+1], θ(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:

    |(xαΓ(αn)Γ(α+1))I0α{fg}(x)(I0αf)(x)(I0αg)(x)||A(f,v1,v2)(x)A(g,w1,w2)(x)|1/2 (2.20)

    where

    A(u,v,w)(x)=(xαΓ(αn)Γ(α+1))×(I0α{(v+w)u}(x))24I0α{vw}(x)((I0αu)(x))2.

    Proof. Setting α=θ in (2.14), we obtain (2.20).

    Corollary 2.4. If v1=m, v2=M, w1=n and w2=N, then we have

    |(xαΓ(αn)Γ(α+1))I0α{fg}(x)(I0αf)(x)(I0αg)(x)|(Mm)(Nn)4MmNn×(I0αf)(x)(I0αg)(x).

    All authors declare no conflicts of interest in this paper.



    [1] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
    [2] Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44.
    [3] E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019), 1227-1236.
    [4] G. Pólya, G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Band 1, Die Grundlehren der mathmatischen, Wissenschaften, Springer, Berlin, 1925.
    [5] S. S. Dragomir, N. T. Diamond, Integral inequalities of Grüss type via Polya-Szegö and ShishaMond results, East Asian Math. J., 19 (2003), 27-39.
    [6] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Enginering, Academic Press, New York, London, Tokyo and Toronto, 1999.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
    [8] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
    [9] S. K. Ntouyas, P. Agarwal, J. Tariboon, On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal, 10 (2016), 491-504.
    [10] M. E. Özdemir, E. Set, O. A. Akdemir, et al. (2015), Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces, Afr. Mat., 26 (2015), 1609-1619. doi: 10.1007/s13370-014-0312-5
    [11] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
    [12] E. Set and B. Çelik, Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators, Creative Math. Inform., 26 (2017), 321-330.
    [13] E. Set, A. O. Akdemir, I. Mumcu, The Hermite-Hadamard's inequaly and its extentions for conformable fractional integrals of any order α > 0, Creative Math. Inform., 27 (2018), 197-206.
    [14] E. Set, A. Gözpınar, I. Mumcu, The Hermite-Hadamard Inequality for s-convex Functions in the Second Sense via Conformable Fractional Integrals and Related Inequalities, Thai J. Math., 2018.
    [15] E. Set, A. Akdemir, B. Çelik, Some Hermite-Hadamard Type Inequalities for Products of Two Different Convex Functions via Conformable Fractional Integrals, Statistical Days, (2016), 11-15.
    [16] P. Baliarsingh, On a fractional difference operator, Alexandria Eng. J., 55 (2016), 1811-1816. doi: 10.1016/j.aej.2016.03.037
    [17] P. Baliarsingh, L. Nayak, A note on fractional difference operators, Alexandria Eng. J., 57 (2018), 1051-1054. doi: 10.1016/j.aej.2017.02.022
    [18] M. A. Dokuyucu, E. Celik, H. Bulut, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92.
    [19] M. A. Dokuyucu, D. Baleanu and E. Celik, Analysis of the fractional Keller-Segel Model, FILOMAT, 32 (2018).
    [20] A. Ekinci and M. E. Ozdemir, Some New Integral Inequalities Via Riemann Liouville Integral Operators, Applied and Computational Mathematics, 3 (2019), 288-295.
    [21] O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space, Fundamenta Informaticae, 166 (2019), 87-110. doi: 10.3233/FI-2019-1795
    [22] O. Abu Arqub, Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis, Fundamenta Informaticae, 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
    [23] O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos, Solitons and Fractals, 126 (2019), 394-402. doi: 10.1016/j.chaos.2019.07.023
    [24] O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos, Solitons and Fractals, 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
  • This article has been cited by:

    1. Humaira Kalsoom, Zareen A. Khan, Hermite-Hadamard-Fejér Type Inequalities with Generalized K-Fractional Conformable Integrals and Their Applications, 2022, 10, 2227-7390, 483, 10.3390/math10030483
    2. MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272
    3. Asha B. Nale, Vaijanath L. Chinchane, Satish K. Panchal, Christophe Chesneau, Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach, 2022, 11, 2075-1680, 79, 10.3390/axioms11020079
    4. Zhiqiang Zhang, Ghulam Farid, Sajid Mehmood, Kamsing Nonlaopon, Tao Yan, Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities, 2022, 6, 2504-3110, 90, 10.3390/fractalfract6020090
    5. Zhiqiang Zhang, Ghulam Farid, Sajid Mehmood, Chahn-Yong Jung, Tao Yan, Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions, 2022, 11, 2075-1680, 82, 10.3390/axioms11020082
    6. Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed, On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications, 2021, 6, 2473-6988, 9154, 10.3934/math.2021532
    7. Tariq A. Aljaaidi, Deepak B. Pachpatte, Mohammed S. Abdo, Thongchai Botmart, Hijaz Ahmad, Mohammed A. Almalahi, Saleh S. Redhwan, (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities, 2021, 5, 2504-3110, 172, 10.3390/fractalfract5040172
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3822) PDF downloads(450) Cited by(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog