Citation: Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel. New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals[J]. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066
[1] | P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98. |
[2] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44. |
[3] | E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019), 1227-1236. |
[4] | G. Pólya, G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Band 1, Die Grundlehren der mathmatischen, Wissenschaften, Springer, Berlin, 1925. |
[5] | S. S. Dragomir, N. T. Diamond, Integral inequalities of Grüss type via Polya-Szegö and ShishaMond results, East Asian Math. J., 19 (2003), 27-39. |
[6] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Enginering, Academic Press, New York, London, Tokyo and Toronto, 1999. |
[7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006. |
[8] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. |
[9] | S. K. Ntouyas, P. Agarwal, J. Tariboon, On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal, 10 (2016), 491-504. |
[10] | M. E. Özdemir, E. Set, O. A. Akdemir, et al. (2015), Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces, Afr. Mat., 26 (2015), 1609-1619. doi: 10.1007/s13370-014-0312-5 |
[11] | H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012. |
[12] | E. Set and B. Çelik, Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators, Creative Math. Inform., 26 (2017), 321-330. |
[13] | E. Set, A. O. Akdemir, I. Mumcu, The Hermite-Hadamard's inequaly and its extentions for conformable fractional integrals of any order α > 0, Creative Math. Inform., 27 (2018), 197-206. |
[14] | E. Set, A. Gözpınar, I. Mumcu, The Hermite-Hadamard Inequality for s-convex Functions in the Second Sense via Conformable Fractional Integrals and Related Inequalities, Thai J. Math., 2018. |
[15] | E. Set, A. Akdemir, B. Çelik, Some Hermite-Hadamard Type Inequalities for Products of Two Different Convex Functions via Conformable Fractional Integrals, Statistical Days, (2016), 11-15. |
[16] | P. Baliarsingh, On a fractional difference operator, Alexandria Eng. J., 55 (2016), 1811-1816. doi: 10.1016/j.aej.2016.03.037 |
[17] | P. Baliarsingh, L. Nayak, A note on fractional difference operators, Alexandria Eng. J., 57 (2018), 1051-1054. doi: 10.1016/j.aej.2017.02.022 |
[18] | M. A. Dokuyucu, E. Celik, H. Bulut, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92. |
[19] | M. A. Dokuyucu, D. Baleanu and E. Celik, Analysis of the fractional Keller-Segel Model, FILOMAT, 32 (2018). |
[20] | A. Ekinci and M. E. Ozdemir, Some New Integral Inequalities Via Riemann Liouville Integral Operators, Applied and Computational Mathematics, 3 (2019), 288-295. |
[21] | O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space, Fundamenta Informaticae, 166 (2019), 87-110. doi: 10.3233/FI-2019-1795 |
[22] | O. Abu Arqub, Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis, Fundamenta Informaticae, 166 (2019), 111-137. doi: 10.3233/FI-2019-1796 |
[23] | O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos, Solitons and Fractals, 126 (2019), 394-402. doi: 10.1016/j.chaos.2019.07.023 |
[24] | O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos, Solitons and Fractals, 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025 |