Citation: Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel. New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals[J]. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066
[1] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[2] | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390 |
[3] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
[4] | Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed . On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics, 2021, 6(9): 9154-9176. doi: 10.3934/math.2021532 |
[5] | Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz . On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities. AIMS Mathematics, 2022, 7(6): 10256-10275. doi: 10.3934/math.2022571 |
[6] | Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch . New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Mathematics, 2021, 6(5): 4507-4525. doi: 10.3934/math.2021267 |
[7] | Erhan Set, Ahmet Ocak Akdemir, Abdurrahman Gözpınar, Fahd Jarad . Ostrowski type inequalities via new fractional conformable integrals. AIMS Mathematics, 2019, 4(6): 1684-1697. doi: 10.3934/math.2019.6.1684 |
[8] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[9] | Fuat Usta, Hüseyin Budak, Mehmet Zeki Sarıkaya . Some new Chebyshev type inequalities utilizing generalized fractional integral operators. AIMS Mathematics, 2020, 5(2): 1147-1161. doi: 10.3934/math.2020079 |
[10] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
This article is based on the well known Chebyshev functional [1]:
T(f,g)=1b−a∫baf(x)g(x)dx−(1b−a∫baf(x)dx)(1b−a∫bag(x)dx) | (1.1) |
where f ve g are two integrable functions which are synchronous on [a,b], i.e.
(f(x)−f(y))(g(x)−g(y))≥0 |
for any x,y∈[a,b], then the Chebyshev inequality states that T(f,g)≥0.
The functional (1.1) has attracted many researchers attention due to diverse applications in numerical quadrature, transform theory, probability and statistical problems. Among those applications, the functional (1.1) has also been employed to yield a number of integral inequalities. For some recent counterparts, generalizations of Chebyshev inequality, the reader may refer to [2,3,9] and [10].
Another important inequality which will be useful to prove our main results is Pólya and Szegö inequality: (see [4])
∫baf2(x)dx∫bag2(x)dx(∫baf(x)g(x)dx)2≤14(√MNmn+√mnMN)2 |
In [5], Dragomir and Diamond obtained the following Grüss type inequality by using the Pólya-Szegö inequality:
Theorem 1.1. Let f,g:[a,b]→R+ be two integrable functions so that
0<m≤f(x)≤M<∞0<n≤g(x)≤N<∞ |
for x∈[a,b]. Then we have
|T(f,g;a,b)|=14(M−m)(N−n)√mnMN(1b−a∫baf(x)dx)(1b−a∫bag(x)dx) | (1.2) |
The constant 14 is best possible in (1.2) in the sense it can not be replaced by a smaller constant.
Let us recall some well-known concepts. We note that the beta function B(α,β) is defined (see [11])
B(α,β)={∫10tα−1(1−t)β−1dt (R(α),R(β)>0)Γ(α)Γ(β)Γ(α+β) (α,β∈C∖Z−0) |
where Γ is the familiar Gamma function. Here and in the following, let C,R,R+ and Z−0 be the sets of complex numbers, real numbers, positive real numbers and non-positive integers, respectively and let R+0=R+∪{0}.
Definition 1.1. (See [6,7]) Let f∈L[a,b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of order α>0 with a≥0 are defined by
(Jαa+f)(x)=1Γ(α)∫xa(x−t)α−1f(t)dt (x>a), | (1.3) |
and
(Jαb−f)(x)=1Γ(α)∫bx(t−x)α−1f(t)dt (x<b), | (1.4) |
where Γ(α)=∫∞0e−xxα−1dx is the Gamma function.
Definition 1.2. (See [8]) Let α∈(n,n+1], n=0,1,2,... and set β=α−n. Then the left conformable fractional integral of order α>0 is defined by
Iaαf(t)=1n!∫ta(t−x)n(x−a)β−1f(x)dx, t>a, | (1.5) |
the right conformable fractional integral of order α>0 is defined by
bIαf(x)=1n!∫bt(x−t)n(b−x)β−1f(x)dx, t<b. | (1.6) |
Notice that if α=n+1 then β=α−n=n+1−n=1 and hence (Iaαf)(t)=(Jan+1f)(t).
Several recent results related to different kinds of fractional integral operators can be found in [12,13,14,15,16,17,18,19,20,21,22,23,24].
The main aim of this present paper is to prove certain new Pólya-Szeg ö and Chebyshev types integral inequalities involving conformable fractional integral operator. We also give some special cases of our results.
In this section, we establish certain Pólya-Szegö type integral inequalities for positive integral functions involving conformable fractional integral operator.
Lemma 2.1. Let f and g be two positive integrable functions on [0,∞). Also let α∈(n,n+1], n=0,1,2,..., set β=α−n. Assume that there exist four positive integrable functions v1,v2,w1 and w2 such that:
0<v1(τ)≤f(τ)≤v2(τ),0<w1(τ)≤g(τ)≤w2(τ)(τ∈[0,x],x>0) | (2.1) |
Then the following inequality holds:
I0α{w1w2f2}(x)I0α{v1v2g2}(x)(I0α{(v1w1+v2w2)fg}(x))2≤14. | (2.2) |
Proof. From (2.1), for τ∈[0,x], x>0, we can write
(v2(τ)w1(τ)−f(τ)g(τ))≥0 | (2.3) |
and
(f(τ)g(τ)−v1(τ)w2(τ))≥0 | (2.4) |
multiplying (2.3) and (2.4), we get
(v2(τ)w1(τ)−f(τ)g(τ))(f(τ)g(τ)−v1(τ)w2(τ))≥0. |
From the above inequality, we can write
(v1(τ)w1(τ)+v2(τ)w2(τ))f(τ)g(τ)≥w1(τ)w2(τ)f2(τ)+v1(τ)v2(τ)g2(τ). | (2.5) |
Multiplying both sides of (2.5) by 1n!(x−τ)nτα−n−1 and integrating the resulting inequality with respect to τ over (0,x), we get
I0α{(v1w1+v2w2)fg}(x)≥I0α{w1w2f2}(x)+I0α{v1v2g2}(x) | (2.6) |
applying the AM-GM inequality, i.e. (a+b≥2√ab, a,b∈R+), we have
I0α{(v1w1+v2w2)fg}(x)≥2√I0α{w1w2f2}(x)+I0α{v1v2g2}(x) |
which implies that
I0α{w1w2f2}(x)+I0α{v1v2g2}(x)≤14(I0α{(v1w1+v2w2)fg}(x))2. |
So, we get the desired result.
Corollary 2.1. If v1=m, v2=M, w1=n and w2=N, then we have
(I0αf2)(x)(I0αg2)(x)((I0αfg)(x))2≤14(√mnMN+√MNmn)2. |
Lemma 2.2. Let f and g be two positive integrable functions on [0,∞). Also let α∈(n,n+1], θ∈(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:
I0α{v1v2}(x)I0θ{w1w2}(x)×I0α{f2}(x)I0θ{g2}(x)≤14(I0α{v1f}(x)I0θ{w1g}(x)+I0α{v2f}(x)I0θ{w2g}(x))2 | (2.7) |
Proof. From (2.1), we get
(v2(τ)w1(ξ)−f(τ)g(ξ))≥0 |
and
(f(τ)g(ξ)−v1(τ)w2(ξ))≥0 |
which leads to
(v1(τ)w2(ξ)+v2(τ)w1(ξ))f(τ)g(ξ)≥f2(τ)g2(ξ)+v1(τ)v2(τ)w1(ξ)w2(ξ). | (2.8) |
Multiplying both sides of (2.8) by w1(ξ)w2(ξ)g2(ξ), we have
v1(τ)f(τ)w1(ξ)g(ξ)+v2(τ)f(τ)w2(ξ)g(ξ)≥w1(ξ)w2(ξ)f2(τ)+v1(τ)v2(τ)g2(ξ). | (2.9) |
Multiplying both sides (2.9) by (1n!)(1k!)(x−τ)n(x−ξ)kτα−n−1ξθ−k−1and integrating the resulting inequality with respect to τ and ξ over (0,x)2, we get
I0α{v1f}(x)I0θ{w1g}(x)+I0α{v2f}(x)I0θ{w2g}(x)≥I0α{f2}(x)I0θ{w1w2}(x)+I0α{v1v2}(x)I0θ{g2}(x). |
Applying the AM-GM inequality, we obtain
I0α{v1f}(x)I0θ{w1g}(x)+I0α{v2f}(x)I0θ{w2g}(x)≥2√I0α{f2}(x)I0θ{w1w2}(x)×I0α{v1v2}(x)I0θ{g2}(x) |
which leads to the desired inequality in (2.7). The proof is completed.
Corollary 2.2. If v1=m, v2=M, w1=n and w2=N, then we have
xα+θΓ(α−n)Γ(θ−k)Γ(α+1)Γ(θ+1)×(I0αf2)(x)(I0θg2)(x)((I0αf)(x)(I0θg)(x))2≤14(√mnMN+√MNmn)2 |
Lemma 2.3. Let f and g be two positive integrable functions on [0,∞). Also let α∈(n,n+1], θ∈(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:
I0α{f2}(x)I0θ{g2}(x)≤I0α{v2fgw1}(x)I0θ{w2fgw1}(x). | (2.10) |
Proof. Using the condition (2.1), we get
f2(τ)≤v2(τ)w1(τ)f(τ)g(τ). | (2.11) |
Multiplying both sides of (2.11) by (1n!)(x−τ)nτα−n−1and integrating the resulting inequality with respect to τ over (0,x), we obtain
1n!∫x0(x−τ)nτα−n−1f2(τ)dτ≤1n!∫x0(x−τ)nτα−n−1v2(τ)w1(τ)f(τ)g(τ)dτ |
which leads to
I0α{f2}(x)≤I0α{v2fgw1}(x). | (2.12) |
Similarly, we can write
g2(ξ)≤w2(ξ)v1(ξ)f(ξ)g(ξ). |
By a similar argument, we have
1k!∫x0(x−ξ)nξθ−n−1g2(ξ)dξ≤1k!∫x0(x−ξ)nξθ−n−1w2(ξ)v1(ξ)f(ξ)g(ξ)dξ |
which implies
I0θ{g2}(x)≤I0θ{w2fgv1}(x). | (2.13) |
Multiplying (2.12) and (2.13), we get the (2.10). The proof is completed.
Corollary 2.3. If v1=m, v2=M, w1=n and w2=N, then we have
(I0αf2)(x)(I0θg2)(x)((I0αfg)(x)(I0θfg)(x))2≤MNmn |
Theorem 2.1. Let f and g be two positive integrable functions on [0,∞). Also let α∈(n,n+1], θ∈(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:
|(xαΓ(α−n)Γ(α+1))(I0θfg)(x)+(xθΓ(θ−k)Γ(θ+1))(I0αfg)(x)−(I0αf)(x)(I0θg)(x)−(I0θf)(x)(I0αg)(x)|≤|A1(f,v1,v2)(x)+A2(f,v1,v2)(x)|1/2×|A1(g,w1,w2)(x)+A2(f,w1,w2)(x)|1/2 | (2.14) |
where
A1(u,v,w)(x)=(xθΓ(θ−k)Γ(θ+1))×(I0α{(v+w)u}(x))24I0α{vw}(x)−(I0αu)(x)(I0θu)(x) |
and
A2(u,v,w)(x)=(xαΓ(α−n)Γ(α+1))×(I0θ{(v+w)u}(x))24I0θ{vw}(x)−(I0αu)(x)(I0θu)(x). |
Proof. Let f and g be two positive integrable functions on [0,∞). For τ,ξ∈(0,x) with x>0, we define H(τ,ξ) as
H(τ,ξ)=(f(τ)−f(ξ))(g(τ)−g(ξ)) |
namely
H(τ,ξ)=f(τ)g(τ)+f(ξ)g(ξ)−f(τ)g(ξ)−f(ξ)g(τ). | (2.15) |
Multiplying both sides of (2.15) by
(1n!)(1k!)(x−τ)n(x−ξ)kτα−n−1ξθ−k−1 |
and double integrating the resulting inequality with respect to τ and ξ over (0,x)2, we get
(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1H(τ,ξ)dτdξ=(xθΓ(θ−k)Γ(θ+1))(I0αfg)(x)+(xαΓ(α−n)Γ(α+1))(I0θfg)(x)−(I0αf)(x)(I0θg)(x)−(I0θf)(x)(I0αg)(x). |
Applying the Cauchy-Schwarz inequality for double integrals, we can write
|(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1H(τ,ξ)dτdξ|≤[(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1f2(τ)dτdξ+(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1f2(ξ)dτdξ−2(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1f(τ)f(ξ)dτdξ]1/2×[(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1g2(τ)dτdξ+(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1g2(ξ)dτdξ−2(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1g(τ)g(ξ)dτdξ]1/2 |
As a consequence
|(1n!)(1k!)∫x0∫x0(x−τ)n(x−ξ)kτα−n−1ξθ−k−1H(τ,ξ)dτdξ|≤[(xθΓ(θ−k)Γ(θ+1))(I0αf2)(x)+(xαΓ(α−n)Γ(α+1))(I0θf2)(x)−2(I0αf)(x)(I0θf)(x)]1/2×[(xθΓ(θ−k)Γ(θ+1))(I0αg2)(x)+(xαΓ(α−n)Γ(α+1))(I0θg2)(x)−2(I0αg)(x)(I0θg)(x)]1/2 |
Applying Lemma 2.1 with w1(τ)=w2(τ)=g(τ)=1, we get
(xθΓ(θ−k)Γ(θ+1))I0α{f2}(x)≤(xθΓ(θ−k)Γ(θ+1))(I0α{(v1+v2)f}(x))24I0α{v1v2}(x). |
This implies that
(xθΓ(θ−k)Γ(θ+1))I0α{f2}(x)−(I0αf)(x)(I0θf)(x)≤(xθΓ(θ−k)Γ(θ+1))(I0α{(v1+v2)f}(x))24I0α{v1v2}(x)−(I0αf)(x)(I0θf)(x)=A1(f,v1,v2) | (2.16) |
and
(xαΓ(α−n)Γ(α+1))I0θ{f2}(x)−(I0αf)(x)(I0θf)(x)≤(xαΓ(α−n)Γ(α+1))(I0θ{(v1+v2)f}(x))24I0θ{v1v2}(x)−(I0αf)(x)(I0θf)(x)=A2(f,v1,v2). | (2.17) |
Similarly, applying Lemma 2.1 with v1(τ)=v2(τ)=f(τ)=1, we have
(xθΓ(θ−k)Γ(θ+1))I0α{g2}(x)−(I0αg)(x)(I0θg)(x)≤A1(g,w1,w2) | (2.18) |
and
(xαΓ(α−n)Γ(α+1))I0θ{g2}(x)−(I0αg)(x)(I0θg)(x)≤A2(g,w1,w2). | (2.19) |
Using (2.16)-(2.19), we conclude the result.
Theorem 2.2. Let f and g be two positive integrable functions on [0,∞). Also let α∈(n,n+1], θ∈(k,k+1], n,k=0,1,2,.... Assume that there exist four positive integrable functions v1,v2,w1 and w2 satisfying condition (2.1). Then the following inequality holds:
|(xαΓ(α−n)Γ(α+1))I0α{fg}(x)−(I0αf)(x)(I0αg)(x)|≤|A(f,v1,v2)(x)A(g,w1,w2)(x)|1/2 | (2.20) |
where
A(u,v,w)(x)=(xαΓ(α−n)Γ(α+1))×(I0α{(v+w)u}(x))24I0α{vw}(x)−((I0αu)(x))2. |
Proof. Setting α=θ in (2.14), we obtain (2.20).
Corollary 2.4. If v1=m, v2=M, w1=n and w2=N, then we have
|(xαΓ(α−n)Γ(α+1))I0α{fg}(x)−(I0αf)(x)(I0αg)(x)|≤(M−m)(N−n)4√MmNn×(I0αf)(x)(I0αg)(x). |
All authors declare no conflicts of interest in this paper.
[1] | P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98. |
[2] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44. |
[3] | E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019), 1227-1236. |
[4] | G. Pólya, G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Band 1, Die Grundlehren der mathmatischen, Wissenschaften, Springer, Berlin, 1925. |
[5] | S. S. Dragomir, N. T. Diamond, Integral inequalities of Grüss type via Polya-Szegö and ShishaMond results, East Asian Math. J., 19 (2003), 27-39. |
[6] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Enginering, Academic Press, New York, London, Tokyo and Toronto, 1999. |
[7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006. |
[8] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. |
[9] | S. K. Ntouyas, P. Agarwal, J. Tariboon, On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal, 10 (2016), 491-504. |
[10] |
M. E. Özdemir, E. Set, O. A. Akdemir, et al. (2015), Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces, Afr. Mat., 26 (2015), 1609-1619. doi: 10.1007/s13370-014-0312-5
![]() |
[11] | H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012. |
[12] | E. Set and B. Çelik, Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators, Creative Math. Inform., 26 (2017), 321-330. |
[13] | E. Set, A. O. Akdemir, I. Mumcu, The Hermite-Hadamard's inequaly and its extentions for conformable fractional integrals of any order α > 0, Creative Math. Inform., 27 (2018), 197-206. |
[14] | E. Set, A. Gözpınar, I. Mumcu, The Hermite-Hadamard Inequality for s-convex Functions in the Second Sense via Conformable Fractional Integrals and Related Inequalities, Thai J. Math., 2018. |
[15] | E. Set, A. Akdemir, B. Çelik, Some Hermite-Hadamard Type Inequalities for Products of Two Different Convex Functions via Conformable Fractional Integrals, Statistical Days, (2016), 11-15. |
[16] |
P. Baliarsingh, On a fractional difference operator, Alexandria Eng. J., 55 (2016), 1811-1816. doi: 10.1016/j.aej.2016.03.037
![]() |
[17] |
P. Baliarsingh, L. Nayak, A note on fractional difference operators, Alexandria Eng. J., 57 (2018), 1051-1054. doi: 10.1016/j.aej.2017.02.022
![]() |
[18] | M. A. Dokuyucu, E. Celik, H. Bulut, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92. |
[19] | M. A. Dokuyucu, D. Baleanu and E. Celik, Analysis of the fractional Keller-Segel Model, FILOMAT, 32 (2018). |
[20] | A. Ekinci and M. E. Ozdemir, Some New Integral Inequalities Via Riemann Liouville Integral Operators, Applied and Computational Mathematics, 3 (2019), 288-295. |
[21] |
O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space, Fundamenta Informaticae, 166 (2019), 87-110. doi: 10.3233/FI-2019-1795
![]() |
[22] |
O. Abu Arqub, Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis, Fundamenta Informaticae, 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
![]() |
[23] |
O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos, Solitons and Fractals, 126 (2019), 394-402. doi: 10.1016/j.chaos.2019.07.023
![]() |
[24] |
O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos, Solitons and Fractals, 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
![]() |
1. | Humaira Kalsoom, Zareen A. Khan, Hermite-Hadamard-Fejér Type Inequalities with Generalized K-Fractional Conformable Integrals and Their Applications, 2022, 10, 2227-7390, 483, 10.3390/math10030483 | |
2. | MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272 | |
3. | Asha B. Nale, Vaijanath L. Chinchane, Satish K. Panchal, Christophe Chesneau, Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach, 2022, 11, 2075-1680, 79, 10.3390/axioms11020079 | |
4. | Zhiqiang Zhang, Ghulam Farid, Sajid Mehmood, Kamsing Nonlaopon, Tao Yan, Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities, 2022, 6, 2504-3110, 90, 10.3390/fractalfract6020090 | |
5. | Zhiqiang Zhang, Ghulam Farid, Sajid Mehmood, Chahn-Yong Jung, Tao Yan, Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions, 2022, 11, 2075-1680, 82, 10.3390/axioms11020082 | |
6. | Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed, On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications, 2021, 6, 2473-6988, 9154, 10.3934/math.2021532 | |
7. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Mohammed S. Abdo, Thongchai Botmart, Hijaz Ahmad, Mohammed A. Almalahi, Saleh S. Redhwan, (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities, 2021, 5, 2504-3110, 172, 10.3390/fractalfract5040172 |