Research article Special Issues

New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals

  • Received: 05 October 2019 Accepted: 10 December 2019 Published: 08 January 2020
  • MSC : 26A33, 26D10, 26D15

  • Recently, several papers related to integral inequalities involving various fractional integral operators have been presented. In this work, motivated essentially by the previous works, we prove some new Polya-Szegö inequalities via conformable fractional integral operator and use them to prove some new fractional Chebyshev type inequalities concerning the integral of the product of two functions and the product of two integrals which are improvement of the results in the paper [Ntouyas, S.K., Agarwal, P. and Tariboon, J., On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal (see [9])].

    Citation: Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel. New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals[J]. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066

    Related Papers:

  • Recently, several papers related to integral inequalities involving various fractional integral operators have been presented. In this work, motivated essentially by the previous works, we prove some new Polya-Szegö inequalities via conformable fractional integral operator and use them to prove some new fractional Chebyshev type inequalities concerning the integral of the product of two functions and the product of two integrals which are improvement of the results in the paper [Ntouyas, S.K., Agarwal, P. and Tariboon, J., On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal (see [9])].


    加载中


    [1] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
    [2] Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44.
    [3] E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019), 1227-1236.
    [4] G. Pólya, G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Band 1, Die Grundlehren der mathmatischen, Wissenschaften, Springer, Berlin, 1925.
    [5] S. S. Dragomir, N. T. Diamond, Integral inequalities of Grüss type via Polya-Szegö and ShishaMond results, East Asian Math. J., 19 (2003), 27-39.
    [6] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Enginering, Academic Press, New York, London, Tokyo and Toronto, 1999.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
    [8] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
    [9] S. K. Ntouyas, P. Agarwal, J. Tariboon, On Polya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal, 10 (2016), 491-504.
    [10] M. E. Özdemir, E. Set, O. A. Akdemir, et al. (2015), Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces, Afr. Mat., 26 (2015), 1609-1619. doi: 10.1007/s13370-014-0312-5
    [11] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
    [12] E. Set and B. Çelik, Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators, Creative Math. Inform., 26 (2017), 321-330.
    [13] E. Set, A. O. Akdemir, I. Mumcu, The Hermite-Hadamard's inequaly and its extentions for conformable fractional integrals of any order α > 0, Creative Math. Inform., 27 (2018), 197-206.
    [14] E. Set, A. Gözpınar, I. Mumcu, The Hermite-Hadamard Inequality for s-convex Functions in the Second Sense via Conformable Fractional Integrals and Related Inequalities, Thai J. Math., 2018.
    [15] E. Set, A. Akdemir, B. Çelik, Some Hermite-Hadamard Type Inequalities for Products of Two Different Convex Functions via Conformable Fractional Integrals, Statistical Days, (2016), 11-15.
    [16] P. Baliarsingh, On a fractional difference operator, Alexandria Eng. J., 55 (2016), 1811-1816. doi: 10.1016/j.aej.2016.03.037
    [17] P. Baliarsingh, L. Nayak, A note on fractional difference operators, Alexandria Eng. J., 57 (2018), 1051-1054. doi: 10.1016/j.aej.2017.02.022
    [18] M. A. Dokuyucu, E. Celik, H. Bulut, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92.
    [19] M. A. Dokuyucu, D. Baleanu and E. Celik, Analysis of the fractional Keller-Segel Model, FILOMAT, 32 (2018).
    [20] A. Ekinci and M. E. Ozdemir, Some New Integral Inequalities Via Riemann Liouville Integral Operators, Applied and Computational Mathematics, 3 (2019), 288-295.
    [21] O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space, Fundamenta Informaticae, 166 (2019), 87-110. doi: 10.3233/FI-2019-1795
    [22] O. Abu Arqub, Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis, Fundamenta Informaticae, 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
    [23] O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos, Solitons and Fractals, 126 (2019), 394-402. doi: 10.1016/j.chaos.2019.07.023
    [24] O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos, Solitons and Fractals, 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3321) PDF downloads(450) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog