[1]
|
Y. Adjabi, F. Jarad, D. Baleanu, T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661–681.
|
[2]
|
W. Tan, F. L. Jiang, C. X. Huang, L. Zhou, Synchronization for a class of fractional-order hyperchaotic system and its application, J. Appl. Math., 2012 (2012), 974639. https://doi.org/10.1155/2012/974639 doi: 10.1155/2012/974639
|
[3]
|
X. Zhou, C. Huang, H. Hu, L. Liu, Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013 (2013), 1–15. https://doi.org/10.1186/1029-242X-2013-303 doi: 10.1186/1029-242X-2013-303
|
[4]
|
F. Liu, L. Feng, V. Anh, J. Li, Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains, Comput. Math. Appl., 78 (2019), 1637–1650. https://doi.org/10.1016/j.camwa.2019.01.007 doi: 10.1016/j.camwa.2019.01.007
|
[5]
|
A. S. Hendy, J. E. Macías-Díaz, A numerically efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 22–37. https://doi.org/10.1016/j.cnsns.2018.10.025 doi: 10.1016/j.cnsns.2018.10.025
|
[6]
|
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
|
[7]
|
Z. Cai, J. Huang, L. Huang, Periodic orbit analysis for the delayed Filippov system, Proc. Am. Math. Soc., 146 (2018), 4667–4682. https://doi.org/10.1090/proc/13883 doi: 10.1090/proc/13883
|
[8]
|
T. Chen, L. Huang, P. Yu, W. Huang, Bifurcation of limit cycles at infinity in piecewise polynomial systems, Nonlinear Anal., Real World Appl., 41 (2018), 82–106. https://doi.org/10.1016/j.nonrwa.2017.10.003 doi: 10.1016/j.nonrwa.2017.10.003
|
[9]
|
J. Wang, X. Chen, L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405–427. https://doi.org/10.1016/j.jmaa.2018.09.024 doi: 10.1016/j.jmaa.2018.09.024
|
[10]
|
L. Bai, F. Liu, S. Tan, A new efficient variational model for multiplicative noise removal, Int. J. Comput. Math., 97 (2020), 1444–1458. https://doi.org/10.1080/00207160.2019.1622688 doi: 10.1080/00207160.2019.1622688
|
[11]
|
H. Yuan, Convergence and stability of exponential integrators for semi-linear stochastic variable delay integro-differential equations, Int. J. Comput. Math., 98 (2020), 903–932. https://doi.org/10.1080/00207160.2020.1792452 doi: 10.1080/00207160.2020.1792452
|
[12]
|
M. Aldhaifallah, M. Tomar, K. Nisar, S. D. Purohit, Some new inequalities for (k,s)-fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 5374–5381.
|
[13]
|
M. Houas, Certain weighted integral inequalities involving the fractional hypergeometric operators, Sci., Ser. A, Math. Sci. (N.S.), 27 (2017), 87–97.
|
[14]
|
M. Houas, On some generalized integral inequalities for Hadamard fractional integrals, Mediterr. J. Model. Simul., 9 (2018), 43–52.
|
[15]
|
D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, Y. Rangel-Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 1–25. https://doi.org/10.1186/s13662-020-02837-0 doi: 10.1186/s13662-020-02837-0
|
[16]
|
T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Spaces, 2020 (2020), 1–14. https://doi.org/10.1155/2020/4352357 doi: 10.1155/2020/4352357
|
[17]
|
P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), 1–19. https://doi.org/10.1186/s13662-020-02825-4 doi: 10.1186/s13662-020-02825-4
|
[18]
|
P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610
|
[19]
|
P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.
|
[20]
|
F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614.
|
[21]
|
G. Rahman, S. Nisar, F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583. https://doi.org/10.3934/Math.2018.4.575 doi: 10.3934/Math.2018.4.575
|
[22]
|
S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Grüss inequalities within generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1–18. https://doi.org/10.1186/s13662-020-02644-7 doi: 10.1186/s13662-020-02644-7
|
[23]
|
S. Rashid, A. O. Akdemir, F. Jarad, M. A. Noor, K. I. Noor, Simpson's type integral inequalities for κ-fractional integrals and their applications, AIMS Math., 4 (2019), 1087–1100. https://doi.org/10.3934/math.2019.4.1087 doi: 10.3934/math.2019.4.1087
|
[24]
|
K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 1–9. https://doi.org/10.1186/s13660-019-2197-1 doi: 10.1186/s13660-019-2197-1
|
[25]
|
R. S. Dubey, P. Goswami, Some fractional integral inequalities for the Katugampola integral operator, AIMS Math., 4 (2019), 193–198. https://doi.org/10.3934/math.2019.2.193 doi: 10.3934/math.2019.2.193
|
[26]
|
Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38–44.
|
[27]
|
T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
|
[28]
|
F. Usta, H. Budak, M. Z. Sarıkaya, On Chebychev type inequalities for fractional integral operators, In: AIP conference proceedings, Vol. 1833, AIP Publishing LLC, 2017.
|
[29]
|
M. E. Özdemir, E. Set, A. O. Akdemir, M. Z. Sarıkaya, Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces, Afr. Mat., 26 (2015), 1609–1619. https://doi.org/10.1007/s13370-014-0312-5 doi: 10.1007/s13370-014-0312-5
|
[30]
|
B. E. Pachpatte, A note on Chebychev-Grüss type inequalities for differentiable functions, Tamsui Oxford J. Math. Sci., 22 (2006), 29–37.
|
[31]
|
Z. Liu, A variant of Chebyshev inequality with applications, J. Math. Inequal., 7 (2013), 551–561. https://doi.org/dx.doi.org/10.7153/jmi-07-51 doi: 10.7153/jmi-07-51
|
[32]
|
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
|
[33]
|
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
|
[34]
|
F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1–16. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
|
[35]
|
A. O. Akdemir, A. Ekinci, E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal., 18 (2017), 661–674.
|
[36]
|
P. O. Mohammed, C. S. Ryoo, A. Kashuri, Y. S. Hamed, K. M. Abualnaja, Some Hermite-Hadamard and Opial dynamic inequalities on time scales, J. Inequal. Appl., 2021 (2021), 1–11. https://doi.org/10.1186/s13660-021-02624-9 doi: 10.1186/s13660-021-02624-9
|
[37]
|
Z. Dahmani, L. Tabharit, On weighted Grüss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31–38.
|
[38]
|
E. Set, Z. Dahmani, İ. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality, Int. J. Optim. Control, Theor. Appl., 8 (2018), 137–144. https://doi.org/10.11121/ijocta.01.2018.00541 doi: 10.11121/ijocta.01.2018.00541
|
[39]
|
K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
|
[40]
|
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, CRC Press, 1993.
|
[41]
|
R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203.
|
[42]
|
R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasc. Math., 56 (2016), 5–27. https://doi.org/10.1515/fascmath-2016-0001 doi: 10.1515/fascmath-2016-0001
|
[43]
|
T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
|
[44]
|
T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1–13.
|
[45]
|
M. Vivas-Cortez, A. Kashuri, J. E. H. Hernández, Trapezium-type inequalities for Raina's fractional integrals operator using generalized convex functions, Symmetry, 12 (2020), 1034. https://doi.org/10.3390/sym12061034 doi: 10.3390/sym12061034
|
[46]
|
S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1–12.
|