Research article Special Issues

New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel

  • Received: 13 May 2021 Accepted: 08 July 2021 Published: 03 August 2021
  • MSC : 26D15, 26D10, 26A33

  • The main goal of this article is first to introduce a new generalization of the fractional integral operators with a certain modified Mittag-Leffler kernel and then investigate the Chebyshev inequality via this general family of fractional integral operators. We improve our results and we investigate the Chebyshev inequality for more than two functions. We also derive some inequalities of this type for functions whose derivatives are bounded above and bounded below. In addition, we establish an estimate for the Chebyshev functional by using the new fractional integral operators. Finally, we find similar inequalities for some specialized fractional integrals keeping some of the earlier results in view.

    Citation: Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel[J]. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648

    Related Papers:

  • The main goal of this article is first to introduce a new generalization of the fractional integral operators with a certain modified Mittag-Leffler kernel and then investigate the Chebyshev inequality via this general family of fractional integral operators. We improve our results and we investigate the Chebyshev inequality for more than two functions. We also derive some inequalities of this type for functions whose derivatives are bounded above and bounded below. In addition, we establish an estimate for the Chebyshev functional by using the new fractional integral operators. Finally, we find similar inequalities for some specialized fractional integrals keeping some of the earlier results in view.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006.
    [2] D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, Y. Rangel-Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), Article ID 374, 1-25.
    [3] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806. doi: 10.1515/math-2020-0038
    [4] P. O. Mohammed, New generalized Riemann-Liouville fractional integral inequalities for convex functions, J. Math. Inequal., 15 (2021), 511-519.
    [5] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), Article ID 595, 1-17.
    [6] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math., 22 (2019), 539-549. doi: 10.1080/09720502.2019.1643552
    [7] P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), Article ID 610, 1-11.
    [8] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), Article ID 112740, 1-15.
    [9] M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for $s$-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
    [10] M. A. Khan, A. Iqbal, M. Suleman, Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 161 (2018), 1-15.
    [11] M. A. Khan, S. Z. Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
    [12] M. A. Khan, N. Mohammad, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 99 (2020), 1-20.
    [13] P. O. Mohammed, Fractional integral inequalities of Hermite-Hadamard type for convex functions with respect to a monotone function, Filomat, 34 (2020), 2401-2411. doi: 10.2298/FIL2007401M
    [14] G. Alsmeyer, Chebyshev's Inequality. In: Lovric M. (eds) International Encyclopedia of Statistical Science, Springer, Berlin, Heidelberg, New York, 2011.
    [15] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
    [16] D. Baleanu, S. D. Purohit, Chebyshev type integral inequalities involving the fractional hypergeometric operators, Abstr. Appl. Anal., 2014 (2014), Article ID 609160, 1-11.
    [17] G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev-type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), Article ID 364, 1-9.
    [18] S. K. Ntouyas, S. D. Purohit, J. Tariboon, Certain Chebyshev type integral inequalities involving Hadamard's fractional operators, Abst. Appl. Anal., 2014 (2014), Article ID 249091, 1-8.
    [19] Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals, Gen. Math., 20 (2012), 63-69.
    [20] C. P. Niculescu, I. Roventa, An extention of Chebyshev's algebric inequality, Math. Rep., 15 (2013), 91-95.
    [21] F. Usta, H. Budak, M. Z. Sarikaya, On Chebyshev type inequalities for fractional integral operators, AIP Conf. Proc., 1833 (2017), 1-4.
    [22] F. Usta, H. Budak, M. Z. Sarikaya, Some new Chebyshev type inequalities utilizing generalized fractional integral operators, AIMS Math., 5 (2020), 1147-1161. doi: 10.3934/math.2020079
    [23] B. G. Pachpatte, A note on Chebyshev-Grüss type inequalities for differential functions, Tamsui Oxford J. Math. Sci., 22 (2006), 29-36.
    [24] Z. Liu, A variant of Chebyshev inequality with applications, J. Math. Inequal., 7 (2013), 551-561.
    [25] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley: New York, NY, USA, 1993.
    [26] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press: San Diego, CA, USA, 1974.
    [27] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives$: $ Theory and Applications, Gordon & Breach Science Publishers: Yverdon, Switzerland, 1993.
    [28] D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), Article ID 830, 1-10.
    [29] R. Hilfer, Y. Luchko, Desiderata for fractional derivatives and integrals, Mathematics, 7 (2019), Article ID 149, 1-5.
    [30] G. S. Teodoro, J. A. T. Machado, E. C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208. doi: 10.1016/j.jcp.2019.03.008
    [31] A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-hydrology, Academic Press, New York, 2017.
    [32] J. Hristov, The Craft of Fractional Modelling in Science and Engineering, MDPI, Basel, 2018.
    [33] E. Ata, İ. O. Kıymaz, A study on certain properties of generalized special functions defined by Fox-Wright function, Appl. Math. Nonlinear Sci., 5 (2020), 147-162. doi: 10.2478/amns.2020.1.00014
    [34] E. İlhan, İ. O. Kıymaz, A generalization of truncated $M$-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171-188. doi: 10.2478/amns.2020.1.00016
    [35] R. Şahin, O. Yağci, Fractional calculus of the extended hypergeometric function, Appl. Math. Nonlinear Sci., 5 (2020), 369-384. doi: 10.2478/amns.2020.1.00035
    [36] D. Kaur, P. Agarwal, M. Rakshit, M. Chand, Fractional calculus involving $(p, q)$-Mathieu type series, Appl. Math. Nonlinear Sci., 5 (2020), 15-34. doi: 10.2478/amns.2020.2.00011
    [37] S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized $k$-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593-602. doi: 10.2478/amns.2020.2.00064
    [38] P. O. Mohammed, T. Abdeljawad, D. Baleanu, A. Kashuri, F. Hamasalh, P. Agarwal, New fractional inequalities of Hermite-Hadamard type involving the incomplete gamma functions, J. Inequal. Appl., 2020 (2020), Article ID 263, 1-16.
    [39] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions$, $ Related Topics and Applications, Springer, Berlin, 2014.
    [40] R. Gorenflo, F. Mainardi, H. M. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In: Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, Bulgaria; August 18-23, 1997) (D. Bainov, Editor), VSP Publishers, Utrecht and Tokyo, 1998, pp. 195-202.
    [41] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 2020, 1-18. Available from: https://doi.org/10.1002/mma.6188.
    [42] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), Article ID 363, 1-19.
    [43] H. M. Srivastava, Some families of Mittag-Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 7 (2016), 123-145.
    [44] A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 517-527; see also Corrigendum, Commun. Nonlinear Sci. Numer. Simulat., 82 (2020), Article ID 104963, 1-1.
    [45] H. M. Srivastava, A. Fernandez, D. Baleanu, Some new fractional-calculus connections between Mittag-Leffler functions, Mathematics, 7 (2019), Article ID 485, 1-10.
    [46] H. M. Srivastava, M. K. Bansal, P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function, Math. Meth. Appl. Sci., 41 (2018), 6108-6121. doi: 10.1002/mma.5122
    [47] H. M. Srivastava, M. K. Bansal, P. Harjule, A class of fractional integral operators involving a certain general multi-index Mittag-Leffler function, Ukraine. Math. J., (2020) (In Press).
    [48] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1-13. doi: 10.1142/9789814355216_0001
    [49] H. M. Srivastava, ſ. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.
    [50] ſ. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814. doi: 10.1080/10652461003675737
    [51] T. R. Prabhakar, A singular integral equation With a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
    [52] C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London Math. Soc. (Ser. $2)$, 27 (1928), 389-400.
    [53] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10 (1935), 286-293.
    [54] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. (Ser. $2)$, 46 (1940), 389-408.
    [55] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
    [56] H. M. Srivastava, R. K. Saxena, Operators of fractional integration and applications, Appl. Math. Comput., 118 (2001), 1-52.
    [57] H. M. Srivastava, P. Harjule, R. Jain, A general fractional differential equation associated with an integral operator with the $H$-function in the kernel, Russian J. Math. Phys., 22 (2015), 112-126. doi: 10.1134/S1061920815010124
    [58] H. M. Srivastava, K. C. Gupta, S. P. Goyal, The $H$-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982.
    [59] R. G. Buschman, H. M. Srivastava, The $\overline{H}$-function associated with a certain class of Feynman integrals, J. Phys. A: Math. Gen., 23 (1990), 4707-4710.
    [60] H. M. Srivastava, S. D. Lin, P. Y. Wang, Some fractional-calculus results for the $\overline{H}$-function associated with a class of Feynman integrals, Russian J. Math. Phys., 13 (2006), 94-100. doi: 10.1134/S1061920806010092
    [61] R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasc. Math., 56 (2016), 5-27.
    [62] R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operator, East Asian Math. J., 21 (2005), 191-203.
    [63] E. M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London Ser. A Math.Phys. Sci., 238 (1940), 423-451.
    [64] S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 2020 (2020), Article ID 647, 1-20.
    [65] J. Choi, P. Agarwal, Certain fractional integral inequalities involving hypergeometric operators, East Asian Math. J., 30 (2014), 283-291. doi: 10.7858/eamj.2014.018
    [66] J. E. H. Hernández, M. Vivas-Cortez, Hermite-Hadamard inequalities type for Raina's fractional integral operator using $\eta$-convex functions, Rev. Mat. Teor. Apl., 26 (2019), 1-19.
    [67] S. D. Purohit, R. K. Raina, Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. Téc. Ing. Univ. Zulia, 37 (2014), 167-175.
    [68] D. Baleanu, A. Kashuri, P. O. Mohammed, B. Meftah, General Raina fractional integral inequalities on coordinates of convex functions, Adv. Differ. Equ., 2021 (2021), Article ID 82, 1-23.
    [69] S. Belardi, Z. Dahmani, On some new fractional integral inequalities, JIPAM J. Inequal. Pure Appl. Math., 10 (2009), 1-5.
    [70] Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2540) PDF downloads(143) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog