In this paper, k-fractional integral operators containing further extension of Mittag-Leffler function are defined firstly. Then, the first and second version of Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals are obtained. Finally, by using these generalized k-fractional integrals containing Mittag-Leffler functions, results for p-convex functions are obtained. The results for convex functions can be deduced by taking p=1.
Citation: Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao. Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals involving further extension of Mittag-Leffler function[J]. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043
[1] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
[2] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
[3] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[4] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[5] | Shuang-Shuang Zhou, Ghulam Farid, Chahn Yong Jung . Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejér-Hadamard inequalities. AIMS Mathematics, 2021, 6(7): 6975-6985. doi: 10.3934/math.2021409 |
[6] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[7] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[8] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[9] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[10] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
In this paper, k-fractional integral operators containing further extension of Mittag-Leffler function are defined firstly. Then, the first and second version of Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals are obtained. Finally, by using these generalized k-fractional integrals containing Mittag-Leffler functions, results for p-convex functions are obtained. The results for convex functions can be deduced by taking p=1.
We first give the definitions of fractional integral operators and some theorems which establish the basis for the second and third part of the paper.
Definition 1. (see [1]) Let w,α,l,γ,c∈C,ℜ(α),ℜ(l)>0,ℜ(c)>ℜ(γ)>0 with ˜p≥0,μ,δ>0 and 0<v≤δ+μ. Let f∈L1[a,b] and x∈[a,b]. Then, the generalized fractional integral operators Fγ,δ,v,cμ,α,l,w,a+f and Fγ,δ,v,cμ,α,l,w,b−f are defined by:
(Fγ,δ,v,cμ,α,l,w,a+f)(x;˜p)=∫xa(x−t)α−1Eγ,δ,v,cμ,α,l(w(x−t)μ;˜p)f(t)dt,(Fγ,δ,v,cμ,α,l,w,b−f)(x;˜p)=∫bx(t−x)α−1Eγ,δ,v,cμ,α,l(w(t−x)μ;˜p)f(t)dt, | (1.1) |
where
Eγ,δ,v,cμ,α,l(t;˜p)=∞∑n=0β˜p(γ+nv,c−γ)β(γ,c−γ)(c)nvΓ(μn+α)tn(l)nδ | (1.2) |
is the extended generalized Mittag-Leffler function and β˜p is the extension of beta function is defined as follows:
β˜p(x,y)=∫10tx−1(1−t)y−1e−(˜pt(1−t))dt, | (1.3) |
where ℜ(x),ℜ(y),ℜ(˜p)>0.
Definition 2. (see [2]) Let f,g:[a,b]→R,0<a<b, be the functions such that f be positive and f∈L1[a,b] and g be differentiable and strictly increasing. Also let ϕx be an increasing function on [a,∞) and w,α,l,γ,c∈C,ℜ(α),ℜ(l)>0,ℜ(c)>ℜ(γ)>0 with ˜p≥0,μ,δ>0 and 0<v≤δ+μ. Then for x∈[a,b] the fractional integral operators are defined by:
(gFϕ,γ,δ,v,cμ,α,l,w,a+f)(x;˜p)=∫xaϕ(g(x)−g(t))g(x)−g(t)Eγ,δ,v,cμ,α,l(w(g(x)−g(t))μ;˜p)g′(t)f(t)dt,(gFϕ,γ,δ,v,cμ,α,l,w,b−f)(x;˜p)=∫bxϕ(g(t)−g(x))g(t)−g(x)Eγ,δ,v,cμ,α,l(w(g(t)−g(x))μ;˜p)g′(t)f(t)dt. | (1.4) |
Definition 3. (see [3]) Let f,g:[a,b]→R,0<a<b, be the functions such that f be positive and f∈L1[a,b] and g be differentiable and strictly increasing. Also, let w,α,l,γ,c∈C,ℜ(α),ℜ(l)>0,ℜ(c)>ℜ(γ)>0 with ˜p≥0,μ,δ>0 and 0<v≤δ+μ. Then for x∈[a,b] the unified integral operators are defined by:
(gFγ,δ,v,cμ,α,l,w,a+f)(x;˜p)=∫xa(g(x)−g(t))α−1Eγ,δ,v,cμ,α,l(w(g(x)−g(t))μ;˜p)g′(t)f(t)dt,(gFγ,δ,v,cμ,α,l,w,b−f)(x;˜p)=∫bx(g(t)−g(x))α−1Eγ,δ,v,cμ,α,l(w(g(t)−g(x))μ;˜p)g′(t)f(t)dt. | (1.5) |
Definition 4. (see [4]) A function f:[a,b]→R is said to be convex, if
f(tx+(1−t)y)≤tf(x)+(1−t)f(y), | (1.6) |
holds for all x,y∈[a,b] and t∈[0,1].
Definition 5. (see [5]) Let I⊂(0,∞) be a real interval and p∈R∖{0}. A function f:I→R is said to be p-convex function, if
f([txp+(1−t)yp]1p)≤tf(x)+(1−t)f(y), | (1.7) |
holds for all x,y∈I and t∈[0,1].
Definition 6. (see [6]) Let p∈R∖{0}. Then a function f:[a,b]⊂(0,∞)→R is said to be p-symmetric with respect to [ap+bp2]1p, if
f(t1p)=f([ap−bp−t]1p), | (1.8) |
for t∈[0,1].
Following inequality is the well-known Hadamard inequality.
Theorem 1. (see [7]) Let f:[a,b]→R be a convex function for a<b. Then the following inequality holds:
f(a+b2)≤1b−a∫baf(x)dx≤f(a)+f(b)2. | (1.9) |
The Fejér-Hadamard inequality is a weighted version of the Hadamard inequality given by Fejér in [8].
Theorem 2. Let f:[a,b]→R be a convex function and g:[a,b]→R be non-negative, integrable and symmetric with respect to a+b2. Then the following inequality holds:
f(a+b2)∫bag(x)dx≤∫baf(x)g(x)dx≤f(a)+f(b)2∫bag(x)dx. | (1.10) |
The aim of this paper is to study the Hadamard and the Fejér-Hadamard inequalities for generalized k-fractional integrals containing Mittag-Leffler functions. In the subsequent section we deduce k-fractional integral operators containing Mittag-Leffler functions. In Section 3, we utilize these k-fractional integral operators to construct the k-fractional Hadamard and Fejér-Hadamard type inequalities.
We define k-fractional integral operators containing Mittag-Leffler function by setting ϕ(x)=xα/k,α>k>0 in (1.4). Here we consider all involved parameters as real numbers.
Definition 7. Let f,g:[a,b]→R,0<a<b, be the functions such that f be positive and f∈L1[a,b] and g be differentiable and strictly increasing. Also, let α>k>0 and w,l,γ,c∈R,c>γ>0 with ˜p≥0,μ,δ,l>0 and 0<v≤δ+μ. Then for x∈[a,b] the left and right generalized k-fractional integral operators (kgFγ,δ,v,cμ,α,l,w,a+f) and (kgFγ,δ,v,cμ,α,l,w,b−f) are defined by
(kgFγ,δ,v,cμ,α,l,w,a+f)(x;˜p)=∫xa(g(x)−g(t))αk−1Eγ,δ,v,cμ,α,l(w(g(x)−g(t))μ;˜p)g′(t)f(t)dt | (2.1) |
and
(kgFγ,δ,v,cμ,α,l,w,b−f)(x;˜p)=∫bx(g(t)−g(x))αk−1Eγ,δ,v,cμ,α,l(w(g(t)−g(x))μ;˜p)g′(t)f(t)dt. | (2.2) |
Remark 1. The following k-fractional integrals can be deduced from (2.1) and (2.2).
(i) If we set ˜p=0 and g(x)=x in Eqs (2.1) and (2.2), then we have
(Fγ,δ,v,c,kμ,α,l,w,a+f)(x)=∫xa(x−t)αk−1Eγ,δ,v,cμ,α,l(w(x−t)μ)f(t)dt |
and
(Fγ,δ,v,c,kμ,α,l,w,b−f)(x)=∫bx(t−x)αk−1Eγ,δ,v,cμ,α,l(w(t−x)μ)f(t)dt. |
(ii) If we set l=δ=1 and g(x)=x in Eqs (2.1) and (2.2), then we have
(Fγ,v,c,kμ,α,w,a+f)(x;˜p)=∫xa(x−t)αk−1Eγ,v,cμ,α(w(x−t)μ;˜p)f(t)dt |
and
(Fγ,v,c,kμ,α,w,b−f)(x;˜p)=∫bx(t−x)αk−1Eγ,v,cμ,α(w(t−x)μ;˜p)f(t)dt. |
(iii) If we set ˜p=0, l=δ=1 and g(x)=x in Eqs (2.1) and (2.2), then we have
(Fγ,v,c,kμ,α,w,a+f)(x)=∫xa(x−t)αk−1Eγ,v,cμ,α(w(x−t)μ)f(t)dt |
and
(Fγ,v,c,kμ,α,w,b−f)(x)=∫bx(t−x)αk−1Eγ,v,cμ,α(w(t−x)μ)f(t)dt. |
(iv) If we set ˜p=0, l=δ=v=1 and g(x)=x in Eqs (2.1) and (2.2), then we have
(Fγ,c,kμ,α,w,a+f)(x)=∫xa(x−t)αk−1Eγ,cμ,α(w(x−t)μ)f(t)dt |
and
(Fγ,c,kμ,α,w,b−f)(x)=∫bx(t−x)αk−1Eγ,cμ,α(w(t−x)μ)f(t)dt. |
(v) For ˜p=w=0, g(x)=x and k=1 the Eqs (2.1) and (2.2) reduce to classical Riemann–Liouville fractional integral operators.
(vi) If we set γ=δ=l=v=1 and w=˜p=0 in Eqs (2.1) and (2.2), Definition 1 of [9] is obtained.
Remark 2. Some more definitions of integral operators are composed as follows:
(i) In Remark 1 (i), if we take w=0, (8) of [10] is obtained.
(ii) In Remark 1 (iii), if we take γ=k=1, (2.2) of [11] is obtained.
(iii) In Remark 1 (iv), if we take w=0 and k=1, we get classical Riemann-Liouville fractional integral.
Remark 3.
(i) In Remark 2, if we take w=0 and c=1, Definition 4 of [12] is obtained.
First, we give the following generalized k-fractional Hadamard inequality.
Theorem 3. Let f,g:[a,b]→R, 0<a<b, be the functions such that f positive and f∈L1[a,b] and g be differentiable and strictly increasing. If f is p-convex, p∈R∖{0}, then the following inequalities for k-fractional integral operators (2.1) and (2.2) hold:
(i) If p>0, then
f([gp(a)+gp(b)2]1p)(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+1)(g−1(gp(b));˜p)≤12[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘θ)(g−1(gp(a));˜p)]≤f(g(a))+f(g(b))2(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+1)(g−1(gp(b));˜p), | (3.1) |
where ˉw=w(gp(b)−gp(a))μ and θ(t)=g1p(t) for all t∈[ap,bp].
(ii) If p<0, then
f([gp(a)+gp(b)2]1p)(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−1)(g−1(gp(b));˜p)≤12[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))+f∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−f∘θ)(g−1(gp(a));˜p)]≤f(g(a))+f(g(b))2(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−1)(g−1(gp(b));˜p), | (3.2) |
where ˉw=w(gp(a)−gp(b))μ and θ(t)=g1p(t) for all t∈[bp,ap].
Proof. We prove the assertion (i) as follows:
(i) Since f is p-convex on [a,b], for all x,y∈I, we have
f([gp(x)+gp(y)2]1p)≤f(g(x))+f(g(y))2. | (3.3) |
Setting g(x)=(tgp(a)+(1−t)gp(b))1p and g(y)=(tgp(b)+(1−t)gp(a))1p in above inequality, we have
f([gp(a)+gp(b)2]1p)≤f([tgp(a)+(1−t)gp(b)]1p)+f([tgp(b)+(1−t)gp(a)]1p)2. | (3.4) |
Multiplying both sides of (3.4) by 2tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p) and then integrating over [0,1], we have
2f([gp(a)+gp(b)2]1p)∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)dt≤∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([tgp(a)+(1−t)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([tgp(b)+(1−t)gp(a)]1p)dt. | (3.5) |
Setting g(m)=tgp(a)+(1−t)gp(b) and g(n)=tgp(b)+(1−t)gp(a) in (3.5), we have
2f([gp(a)+gp(b)2]1p)∫g−1(gp(b))g−1(gp(a))(gp(b)−g(m))αk−1Eγ,δ,v,cμ,α,l(ˉw(gp(b)−g(m))μ;˜p)g′(m)dm≤∫g−1(gp(b))g−1(gp(a))(gp(b)−g(m))αk−1Eγ,δ,v,cμ,α,l(ˉw(gp(b)−g(m))μ;˜p)f(g1p(m))g′(m)dm+∫g−1(gp(b))g−1(gp(a))(g(n)−gp(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(n)−gp(a))μ;˜p)f(g1p(n))g′(n)dn, | (3.6) |
by using k-fractional integral operators (2.1) and (2.2), the first inequality of (3.1) is obtained.
Now to prove the second inequality of (3.1), again from p-convexity of f over [0,1] and for t∈[0,1], we have
f([tgp(a)+(1−t)gp(b)]1p)+f([tgp(b)+(1−t)gp(a)]1p)≤f(g(a))+f(g(b)). | (3.7) |
Multiplying both sides of (3.7) by tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p) and then integrating over [0,1], we have
∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([tgp(a)+(1−t)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([tgp(b)+(1−t)gp(a)]1p)dt≤[f(g(a))+f(g(b))]∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)dt. | (3.8) |
Setting g(m)=tgp(a)+(1−t)gp(b) and g(n)=tgp(b)+(1−t)gp(a) in (3.8), then by using k-fractional integral operators (2.1) and (2.2), the second inequality of (3.1) is obtained.
(ii) Proof is similar to the proof of (i).
Remark 4. By setting ˜p=w=0 in (3.1) and (3.2), Corollary 23 of [13] is obtained.
Remark 5. By using (3.1) and (3.2), some more k-fractional inequalities are presented as follows:
(i) By setting ˜p=w=0 and g=I, we get
f([ap+bp2]1p)∫bpap(bp−x)αk−1dx≤12[∫bpap(bp−x)αk−1f(x1p)dx+∫bpap(y−ap)αk−1f(y1p)dy]≤f(a)+f(b)2∫bpap(bp−x)αk−1dx. |
(ii) By setting ˜p=0,p=−1 and g=I, we get
f(2aba+b)∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ)dx≤12[∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ)f(x1p)dx+∫1b1a(y−1a)αk−1Eγ,δ,v,cμ,α,l(ˉw(y−1a)μ)f(y1p)dx]≤f(a)+f(b)2∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ)dx. |
(iii) By setting g=I and p=−1, we get
f(2aba+b)∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ;˜p)dx≤12[∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ;˜p)f(x1p)dx+∫1b1a(y−1a)αk−1Eγ,δ,v,cμ,α,l(ˉw(y−1a)μ;˜p)f(y1p)dx]≤f(a)+f(b)2∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ;˜p)dx. |
(iv) By setting w=˜p=0;p=−1 and g=I, we get
f(2aba+b)∫1b1a(1b−x)αk−1dx≤12[∫1b1a(1b−x)αk−1f(x1p)dx+∫1b1a(y−1a)αk−1f(y1p)dy]≤f(a)+f(b)2∫1b1a(1b−x)αk−1dx. |
Corollary 1. By using (3.1) and (3.2), some more k-fractional inequalities are presented as follows:
(i) By setting p=1, we get
f(g(a)+g(b)2)⋅∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(b)−g(x))μ;˜p)g′(x)dx≤12[∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(b)−g(x))μ;˜p)f(g(x))g′(x)dx+∫ba(g(y)−g(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(y)−g(a))μ;˜p)f(g(y))g′(y)dy]≤f(g(a))+f(g(b))2∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(b)−g(x))μ;˜p)g′(x)dx. |
(ii) By setting p=−1, we get
f([g−1(a)+g−1(b)2]−1)⋅∫g−1(g−1(b))g−1(g−1(a))(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−1(b)−g(x))μ;˜p)g′(x)dx≤12[∫g−1(g−1(b))g−1(g−1(a))(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−1(b)−g(x))μ;˜p)f(g−1(x))g′(x)dx+∫g−1(g−1(b))g−1(g−1(a))(g(y)−g−1(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(y)−g−1(a))μ;˜p)f(g−1(y))g′(y)dy]≤f(g(a))+f(g(b))2∫g−1(g−1(b))g−1(g−1(a))(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−1(b)−g(x))μ;˜p)g′(x)dx. |
(iii) By setting p=−2, we get
f(√2g2(a)g2(b)g2(a)+g2(b))⋅∫g−1(g−2(b))g−1(g−2(a))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−2(b)−g(x))μ;˜p)g′(x)dx≤12[∫g−1(g−2(b))g−1(g−2(a))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−2(b)−g(x))μ;˜p)f((√g(x))−1)g′(x)dx+∫g−1(g−2(b))g−1(g−2(a))(g(y)−g−2(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(y)−g−2(a))μ;˜p)f((√g(y))−1)g′(y)dy]≤f(g(a))+f(g(b))2∫g−1(g−2(b))g−1(g−2(a))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−2(b)−g(x))μ;˜p)g′(x)dx. |
Corollary 2. The aforementioned k-fractional inequalities are further connected with already known results as follows:
(i) By setting k=1 in Remark 5 (i), Theorem 9 of [6] is obtained.
(ii) By setting k=1 in Remark 5 (ii), Theorem 2.1 of [14] is obtained.
(iii) By setting k=1 in Remark 5 (iii), Theorem 2.1 of [15] is obtained.
(iv) By setting k=1 in Remark 5 (iv), Theorem 4 of [16] is obtained.
(v) By setting k=1 in Remark 5 (v), Theorem 2.1 of [17] is obtained.
The following lemma is useful to present the Fejér-Hadamard inequality for generalized k-fractional integrals.
Lemma 1. Let f,g:[a,b]→R, 0<a<b, be the functions such that f positive and f∈L1[a,b] and g be differentiable and strictly increasing. If f is p-convex, p∈R∖{0} and f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p), then for generalized k-fractional integral operators (2.1) and (2.2), we have:
(i) If p>0, then
(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)=(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘θ)(g−1(gp(a));˜p)=12[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘θ)(g−1(gp(a));˜p)], | (3.9) |
with θ(t)=g1p(t) for all t∈[ap,bp].
(ii) If p<0, then
(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))+f∘θ)(g−1(gp(a));˜p)=(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−f∘θ)(g−1(gp(b));˜p)=12[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))+f∘θ)(g−1(gp(a));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−f∘θ)(g−1(gp(b));˜p)], | (3.10) |
with θ(t)=g1p(t) for all t∈[bp,ap].
Proof. We prove the assertion (i) as follows:
(i) By definition of generalized k-fractional integral operators (2.1) and (2.2), we have
(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)=∫g−1(gp(b))g−1(gp(a))(gp(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(gp(b)−g(x))μ;˜p)(f∘θ)(x)g′(x)dx=∫g−1(gp(b))g−1(gp(a))(gp(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(gp(b)−g(x))μ;˜p)f(g1p(x))g′(x)dx=∫g−1(gp(b))g−1(gp(a))(gp(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(gp(b)−g(x))μ;˜p)f([gp(a)+gp(b)−g(x)]1p)g′(x)dx. | (3.11) |
Setting g(t)=gp(a)+gp(b)−g(x) in the above equation and using f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p), we have:
(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)=∫g−1(gp(b))g−1(gp(a))(g(t)−gp(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(t)−gp(a))μ;˜p)f(g1p(t))g′(t)dt=∫g−1(gp(b))g−1(gp(a))(g(t)−gp(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(t)−gp(a))μ;˜p)(f∘θ)(t)g′(t)dt. | (3.12) |
This implies
(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)=(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘θ)(g−1(gp(a));˜p). | (3.13) |
By adding (kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p) on both sides of (3.13), we have
2(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)=(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘θ)(g−1(gp(a));˜p). | (3.14) |
From Eqs (3.13) and (3.14), the result (3.9) can be obtained.
(ii) Proof is similar to the proof of (i).
The first version of the Fejér-Hadamard inequality for generalized k-fractional integrals is given as follows:
Theorem 4. Let f,g:[a,b]→R, 0<a<b, be the functions such that f positive and f∈L1[a,b] and g be differentiable and strictly increasing, h is a non-negative and integrable function. If f is p-convex, p∈R∖{0} and f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p), then the following inequalities for generalized k-fractional integral operators (2.1) and (2.2) hold:
(i) If p>0, then
f([gp(a)+gp(b)2]1p)[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+h∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−h∘θ)(g−1(gp(a));˜p)]≤(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘h∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘h∘θ)(g−1(gp(a));˜p)≤f(g(a))+f(g(b))2[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+h∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−h∘θ)(g−1(gp(a));˜p)], | (3.15) |
where ˉw=w(gp(b)−gp(a))μ and θ(t)=g1p(t) for all t∈[ap,bp].
(ii) If p<0, then
f([gp(a)+gp(b)2]1p)[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))+h∘θ)(g−1(gp(a));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−h∘θ)(g−1(gp(b));˜p)]≤(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))+f∘h∘θ)(g−1(gp(a));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−f∘h∘θ)(g−1(gp(b));˜p)≤f(g(a))+f(g(b))2[(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))+h∘θ)(g−1(gp(a));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))−h∘θ)(g−1(gp(b));˜p)]. | (3.16) |
where ˉw=w(gp(a)−gp(b))μ and θ(t)=g1p(t) for all t∈[bp,ap].
Proof. We prove the assertion (i) as follows:
(i) Multiplying both sides of (3.4) by 2tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([tgp(a)+(1−t)gp(b)]1p) and then integrating over [0,1], we have
2f([gp(a)+gp(b)2]1p)∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([tgp(a)+(1−t)gp(b)]1p)dt≤∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([tgp(a)+(1−t)gp(b)]1p)h([tgp(a)+(1−t)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([tgp(b)+(1−t)gp(a)]1p)h([tgp(a)+(1−t)gp(b)]1p)dt. | (3.17) |
Setting g(x)=tgp(a)+(1−t)gp(b), that is, gp(a)+gp(b)−g(x)=tgp(b)+(1−t)gp(a), in (3.17) and using f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p), we have
2f([gp(a)+gp(b)2]1p)∫g−1(gp(b))g−1(gp(a))(gp(b)−g(xt))αk−1Eγ,δ,v,cμ,α,l(ˉw(gp(b)−g(x))μ;˜p)(h∘θ)(x)g′(x)dx≤∫g−1(gp(b))g−1(gp(a))(gp(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(gp(b)−g(x))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx+∫g−1(gp(b))g−1(gp(a))(g(x)−gp(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(x)−gp(a))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx. | (3.18) |
This implies
2f([gp(a)+gp(b)2]1p)(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+h∘θ)(g−1(gp(b));˜p)≤(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘h∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘h∘θ)(g−1(gp(a));˜p). | (3.19) |
Using Lemma 3.1 (i) in above inequality, then first inequality of (3.15) is obtained.
Now to prove second inequality of (3.15), multiplying both sides of (3.7) by tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([tgp(a)+(1−t)gp(b)]1p) and then integrating over [0,1], we have
∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([tgp(a)+(1−t)gp(b)]1p)f([tgp(a)+(1−t)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([tgp(a)+(1−t)gp(b)]1p)f([tgp(b)+(1−t)gp(a)]1p)dt≤[f(g(a))+f(g(b))]∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([tgp(a)+(1−t)gp(b)]1p)dt. | (3.20) |
Setting g(x)=tgp(a)+(1−t)gp(b) and using f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p) in (3.20), we have
(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+f∘h∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(b))−f∘h∘θ)(g−1(gp(a));˜p)≤[f(g(a))+f(g(b))](kgFγ,δ,v,cμ,α,l,ˉw,g−1(gp(a))+h∘θ)(g−1(gp(b));˜p). | (3.21) |
Using Lemma 3.1 (i) in above inequality, then second inequality of (3.15) is obtained.
(ii) Proof is similar to the proof of (i).
Remark 6. By using (3.15) and (3.16), some more k-fractional inequalities are presented as follows:
(i) By setting ˜p=0 and g=I, we get
f([ap+bp2]1p)∫bpap(bp−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(bp−x)μ)(h∘θ)(x)dx≤12[∫bpap(bp−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(bp−x)μ)(f∘θ)(x)(h∘θ)(x)dx+∫bpap(x−ap)αk−1Eγ,δ,v,cμ,α,l(ˉw(x−ap)μ;˜p)(f∘θ)(x)(h∘θ)(x)dx]≤f(a)+f(b)2∫bpap(bp−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(bp−x)μ)(h∘θ)(x)dx. |
(ii) By setting w=˜p=0 and g=I, we get
f([ap+bp2]1p)∫bpap(bp−x)αk−1(h∘θ)(x)dx≤12[∫bpap(bp−x)αk−1(f∘θ)(x)(h∘θ)(x)dx+∫bpap(x−ap)αk−1(f∘θ)(x)(h∘θ)(x)dx]≤f(a)+f(b)2∫bpap(bp−x)αk−1(h∘θ)(x)dx. |
(iii) By setting ˜p=0, h(x)=1, p=−1 and g=I, we get
f(2aba+b)∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ)θ(x)dx≤12[∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ)(f∘θ)(x)θ(x)dx+∫1b1a(x−1a)αk−1Eγ,δ,v,cμ,α,l(ˉw(x−1a)μ)(f∘θ)(x)θ(x)dx]≤f(a)+f(b)2∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ)θ(x)dx. |
(iv) By setting g=I, h(x)=1 and p=−1, we get
f(2aba+b)∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ;˜p)θ(x)dx≤12[∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ;˜p)(f∘θ)(x)θ(x)dx+∫1b1a(x−1a)αk−1Eγ,δ,v,cμ,α,l(ˉw(x−1a)μ;˜p)(f∘θ)(x)θ(x)dx]≤f(a)+f(b)2∫1b1a(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉw(1b−x)μ;˜p)θ(x)dx. |
(v) By setting w=˜p=0, h(x)=1, p=−1 and g=I, we get
f(2aba+b)∫1b1a(1b−x)αk−1θ(x)dx≤12[∫1b1a(1b−x)αk−1(f∘θ)(x)θ(x)dx+∫1b1a(x−1a)αk−1(f∘θ)(x)θ(x)dx]≤f(a)+f(b)2∫1b1a(1b−x)αk−1θ(x)dx. |
Corollary 3. By using (3.15) and (3.16), some more k-fractional inequalities are presented as follows:
(i) By setting p=1, we get
f(g(a)+g(b)2)⋅∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(b)−g(x))μ;˜p)(h∘θ)(x)g′(x)dx≤12[∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(b)−g(x))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx+∫ba(g(x)−g(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(x)−g(a))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx]≤f(g(a))+f(g(b))2⋅∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(b)−g(x))μ;˜p)(h∘θ)(x)g′(x)dx. |
(ii) By setting p=−1, we get
f([g−1(a)+g−1(b)2]−1)⋅∫g−1(g−1(b))g−1(g−1(a))(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−1(b)−g(x))μ;˜p)(h∘θ)(x)g′(x)dx≤12[∫g−1(g−1(b))g−1(g−1(a))(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−1(b)−g(x))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx+∫g−1(g−1(b))g−1(g−1(a))(g(x)−g−1(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(x)−g−1(a))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx]≤f(g(a))+f(g(b))2⋅∫g−1(g−1(b))g−1(g−1(a))(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−1(b)−g(x))μ;˜p)(h∘θ)(x)g′(x)dx. |
(iii) By setting p=−2, we get
f((√2g2(a)g2(b)g2(a)+g2(b)))⋅∫g−1(g−2(b))g−1(g−2(a))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−2(b)−g(x))μ;˜p)(h∘θ)(x)g′(x)dx≤12[∫g−1(g−2(b))g−1(g−2(a))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−2(b)−g(x))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx+∫g−1(g−2(b))g−1(g−2(a))(g(x)−g−2(a))αk−1Eγ,δ,v,cμ,α,l(ˉw(g(x)−g−2(a))μ;˜p)(f∘θ)(x)(h∘θ)(x)g′(x)dx]≤f(g(a))+f(g(b))2⋅∫g−1(g−2(b))g−1(g−2(a))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉw(g−2(b)−g(x))μ;˜p)(h∘θ)(x)g′(x)dx. |
Corollary 4. The aforementioned k-fractional inequalities are further connected with already known results as follows:
(i) By setting k=1 in Remark 6 (i), Theorem 2.2 of [18] is obtained.
(ii) By setting k=1 in Remark 6 (ii), Theorem 9 of [6] is obtained.
(iii) By setting k=1 in Remark 6 (iii), Theorem 2.1 of [14] is obtained.
(iv) By setting k=1 in Remark 6 (iv), Theorem 2.1 of [15] is obtained.
(v) By setting k=1 in Remark 6 (v), Theorem 4 of [16] is obtained.
(vi) By setting k=1 in Remark 6 (vi), Theorem 2.5 of [17] is obtained.
In the next theorem we present another version of the Hadamard inequality.
Theorem 5. Let f,g:[a,b]→R, 0<a<b, be the functions such that f positive and f∈L1[a,b] and g be differentiable and strictly increasing. If f is p-convex, p∈R∖{0}, then for generalized k-fractional integral operators (2.1) and (2.2), we have:
(i) If p>0, then
f([gp(a)+gp(b)2]1p)(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)+1)(g−1(gp(b));˜p)≤(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)+f∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)−f∘θ)(g−1(gp(a));˜p)≤f(g(a))+f(g(b))2(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)+1)(g−1(gp(b));˜p), | (3.22) |
where ˉˉw=2μw(gp(b)−gp(a))μ and θ(t)=g1p(t) for all t∈[ap,bp].
(ii) If p<0, then
f([gp(a)+gp(b)2]1p)(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)−1)(g−1(gp(b));˜p)≤(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)+f∘θ)(g−1(gp(a));˜p)+(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)−f∘θ)(g−1(gp(b));˜p)≤f(g(a))+f(g(b))2(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1((gp(a)+gp(b))/(gp(a)+gp(b))22)−1)(g−1(gp(b));˜p), | (3.23) |
where ˉˉw=2μw(gp(b)−gp(a))μ and θ(t)=g1p(t) for all t∈[bp,ap].
Proof. We prove the assertion (i) as follows:
(i) Setting g(x)=[(t2)gp(a)+(2−t2)gp(b)]1p and g(y)=[(t2)gp(b)+(2−t2)gp(a)]1p in (3.3), we have
f([gp(a)+gp(b)2]1p)≤f([(t2)gp(a)+((2−t)2)gp(b)]1p)+f([(t2)gp(b)+((2−t)2)gp(a)]1p)2. | (3.24) |
Multiplying both sides of (3.24) by 2tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p) and then integrating over [0,1], we have
2f([gp(a)+gp(b)2]1p)∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)dt≤∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(a)+(2−t2)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(b)+(2−t2)gp(a)]1p)dt. | (3.25) |
Setting g(x)=[(t2)gp(a)+(2−t2)gp(b)]1p and g(y)=[(t2)gp(b)+(2−t2)gp(a)]1p in (3.25), then by using k-fractional integral operators (2.1) and (2.2), the first inequality of (3.22) is obtained.
Now to prove the second inequality of (3.22), again from p-convexity of f over [a,b] and for t∈[0,1], we have
f([t2gp(a)+(2−t2)gp(b)]1p)+f([t2gp(b)+(2−t2)gp(a)]1p)≤f(g(a))+f(g(b)). | (3.26) |
Multiplying both sides of (3.26) by tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p) and then integrating over [0,1], we have
∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(a)+(2−t2)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(b)+(2−t2)gp(a)]1p)dt≤[f(g(a))+f(g(b))]∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)dt. | (3.27) |
Setting g(m)=(t2)gp(a)+(2−t2)gp(b) and g(n)=(t2)gp(b)+(2−t2)gp(a) in (3.27), then by using k-fractional integral operators (2.1) and (2.2), the second inequality of (3.22) is obtained.
(ii) Proof is similar to the proof of (i).
Remark 7. By using (3.22) and (3.23), some more k-fractional inequalities are presented as follows: (i) By setting ˜p=0,p=−1 and g=I, we get
f(2aba+b)∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ)dx≤12[∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ)f(x−1)dx+∫2aba+b1a(y−1a)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(y−1a)μ)f(y−1)dy]≤f(a)+f(b)2∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ)dx. |
(ii) By setting g=I and p=−1, we get
f(2aba+b)∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ;˜p)dx≤12[∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ;˜p)f(x−1)dx+∫2aba+b1a(y−1a)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(y−1a)μ;˜p)f(y−1)dy]≤f(a)+f(b)2∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ;˜p)dx. |
Corollary 5. By using (3.22) and (3.23), some more k-fractional inequalities are presented as follows:
(i) By setting p=1, we get
f(g(a)+g(b)2)⋅∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(b)−g(x))μ;˜p)g′(x)dx≤12[∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(b)−g(x))μ;˜p)f(g(x))g′(x)dx+∫ba(g(y)−g(a))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(y)−g(a))μ;˜p)f(g(y))g′(y)dy]≤f(g(a))+f(g(b))2∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(b)−g(x))μ;˜p)g′(x)dx. |
(ii) By setting p=−1, we get
f([g−1(a)+g−1(b)2]−1)⋅∫g−1(g−1(b))g−1(g−1(a)+g−1(b)2)(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−1(b)−g(x))μ;˜p)g′(x)dx≤12[∫g−1(g−1(b))g−1(g−1(a)+g−1(b)2)(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−1(b)−g(x))μ;˜p)f(g−1(x))g′(x)dx+∫g−1(g−1(a)+g−1(b)2)g−1(g−1(a))(g(y)−g−1(a))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(y)−g−1(a))μ;˜p)f(g−1(y))g′(y)dy]≤f(g(a))+f(g(b))2∫g−1(g−1(b))g−1(g−1(a)+g−1(b)2)(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−1(b)−g(x))μ;˜p)g′(x)dx. |
(iii) By setting p=−2, we get
f(√2g2(a)g2(b)g2(a)+g2(b))⋅∫g−1(g−2(b))g−1(2g2(a)g2(b)g2(a)+g2(b))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−2(b)−g(x))μ;˜p)g′(x)dx≤12[∫g−1(g−2(b))g−1(2g2(a)g2(b)g2(a)+g2(b))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−2(b)−g(x))μ;˜p)f(g−2(x))g′(x)dx+∫g−1(2g2(a)g2(b)g2(a)+g2(b))g−1(g−2(a))(g(y)−g(a))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(y)−g(a))μ;˜p)f(g−2(y))g′(y)dy]≤f(g(a))+f(g(b))2∫g−1(g−2(b))g−1(2g2(a)g2(b)g2(a)+g2(b))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−2(b)−g(x))μ;˜p)g′(x)dx. |
Corollary 6. The aforementioned k-fractional inequalities are further connected with already known results as follows:
(i) By setting k=1 in Remark 7 (i), Theorem 2.3 of [14] is obtained.
(ii) By setting k=1 in Remark 7 (ii), Theorem 2.3 of [15] is obtained.
(iii) By setting k=1 in Remark 7 (iii), Theorem 2.7 of [17] is obtained.
The second version of the Fejér-Hadamard inequality for generalized k-fractional integrals is given as follows:
Theorem 6. Let f,g:[a,b]→R, 0<a<b, be the functions such that f positive and f∈L1[a,b] and g be differentiable and strictly increasing, h is a non-negative and integrable function. If f is p-convex, p∈R∖{0} and f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p), then the following inequalities for generalized k-fractional integral operators (2.1) and (2.2) hold:
(i) If p>0, then
f([gp(a)+gp(b)2]1p)(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)+h∘θ)(g−1(gp(b));˜p)≤(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)+f∘h∘θ)(g−1(gp(b));˜p)+(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)−f∘h∘θ)(g−1(gp(a));˜p)≤f(g(a))+f(g(b))2(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)+h∘θ)(g−1(gp(b));˜p), | (3.28) |
where ˉˉw=2μw(gp(b)−gp(a))μ and θ(t)=g1p(t) for all t∈[ap,bp].
(ii) If p<0, then
f([gp(a)+gp(b)2]1p)(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)−h∘θ)(g−1(gp(b));˜p)≤(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)+f∘h∘θ)(g−1(gp(a));˜p)+(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)−f∘h∘θ)(g−1(gp(b));˜p)≤f(g(a))+f(g(b))2(kgFγ,δ,v,cμ,α,l,ˉˉw,g−1(gp(a)+gp(b)2)−h∘θ)(g−1(gp(b));˜p), | (3.29) |
where ˉˉw=2μw(gp(a)−gp(b))μ and θ(t)=g1p(t) for all t∈[bp,ap].
Proof. We prove the first assertion as follows:
(i) Multiplying (3.24) by 2tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([(t2)gp(a)+(2−t2)gp(b)]1p) and then integrating over [0,1], we have
2f([gp(a)+gp(b)2]1p)⋅∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([t2gp(a)+(2−t2)gp(b)]1p)dt≤∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(a)+(2−t2)gp(b)]1p)h([t2gp(a)+(2−t2)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(b)+(2−t2)gp(a)]1p)h([t2gp(a)+(2−t2)gp(b)]1p)dt. | (3.30) |
Setting g(x)=(t2)gp(a)+(2−t2)gp(b) and g(y)=(t2)gp(b)+(2−t2)gp(a), that is, gp(a)+gp(b)−g(x)=(t2)gp(b)+(2−t2)gp(a) in (3.30), then by using f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p) and k-fractional integral operators (2.1) and (2.2), the first inequality of (3.28) is obtained.
Now to prove the second inequality of (3.28), multiplying both sides of (3.26) by 2tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([(t2)gp(a)+(2−t2)gp(b)]1p) and then integrating over [0,1], we have
∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(a)+(2−t2)gp(b)]1p)h([t2gp(a)+(2−t2)gp(b)]1p)dt+∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)f([t2gp(b)+(2−t2)gp(a)]1p)h([t2gp(a)+(2−t2)gp(b)]1p)dt≤[f(g(a))+f(g(b))]∫10tαk−1Eγ,δ,v,cμ,α,l(wtμ;˜p)h([t2gp(a)+(2−t2)gp(b)]1p)dt. | (3.31) |
Setting g(x)=(t2)gp(a)+(2−t2)gp(b) and g(y)=(t2)gp(b)+(2−t2)gp(a), that is, gp(a)+gp(b)−g(x)=(t2)gp(b)+(2−t2)gp(a) in (3.31), then by using f(g1p(x))=f([gp(a)+gp(b)−g(x)]1p) and k-fractional integral operators (2.1) and (2.2), the second inequality of (3.28) is obtained.
(ii) Proof is similar to the proof of (i).
Remark 8. By setting ˜p=w=0 in (3.28) and (3.29), Corollary 31 of [13] is obtained.
Remark 9. By using (3.28) and (3.29), some more k-fractional inequalities are presented as follows:
(i) By setting ˜p=0,p=−1 and g=I, we get
f(2aba+b)∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ)h(x−1)dx≤12[∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ)f(x−1)h(x−1)dx+∫2aba+b1a(x−1a)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(x−1a)μ)f(x−1)h(x−1)dx]≤f(a)+f(b)2∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ)h(x−1)dx. |
(ii) By setting g=I and p=−1, we get
f(2aba+b)∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ;˜p)h(x−1)dx≤12[∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ;˜p)f(x−1)h(x−1)dx+∫2aba+b1a(x−1a)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(x−1a)μ;˜p)f(x−1)h(x−1)dx]≤f(a)+f(b)2∫1b2aba+b(1b−x)αk−1Eγ,δ,v,cμ,α,l(ˉˉw(1b−x)μ;˜p)h(x−1)dx. |
Corollary 7. By using (3.28) and (3.29), some more k-fractional inequalities are presented as follows:
(i) By setting p=1, we get
f(g(a)+g(b)2)⋅∫ba(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(b)−g(x))μ;˜p)h(g(x))g′(x)dx≤12[∫ba+b2(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(b)−g(x))μ;˜p)f(g(x))h(g(x))g′(x)dx+∫a+b2a(g(x)−g(a))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(x)−g(a))μ;˜p)f(g(x))h(g(x))g′(x)dx]≤f(g(a))+f(g(b))2⋅∫ba+b2(g(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(b)−g(x))μ;˜p)h(g(x))g′(x)dx. |
(ii) By setting p=−1, we get
f([g−1(a)+g−1(b)2]−1)⋅∫g−1(g−1(b))g−1(g−1(a)+g−1(b)2)(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−1(b)−g(x))μ;˜p)h(g−1(x))g′(x)dx≤12[∫g−1(g−1(b))g−1(g−1(a)+g−1(b)2)(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−1(b)−g(x))μ;˜p)f(g−1(x))h(g−1(x))g′(x)dx+∫g−1(g−1(a)+g−1(b)2)g−1(g−1(a))(g(x)−g−1(a))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(x)−g−1(a))μ;˜p)f(g−1(x))h(g−1(x))g′(x)dx]≤f(g(a))+f(g(b))2⋅∫g−1(g−1(b))g−1(g−1(a)+g−1(b)2)(g−1(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−1(b)−g(x))μ;˜p)h(g−1(x))g′(x)dx. |
(iii) By setting p=−2, we get
f(√2g2(a)g2(b)g2(a)+g2(b))⋅∫g−1(g−2(b))g−1(2g2(a)g2(b)g2(a)+g2(b))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−2(b)−g(x))μ;˜p)h(g−2(x))g′(x)dx≤12[∫g−1(g−2(b))g−1(2g2(a)g2(b)g2(a)+g2(b))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−2(b)−g(x))μ;˜p)f(g−2(x))h(g−2(x))g′(x)dx+∫g−1(2g2(a)g2(b)g2(a)+g2(b))g−1(g−2(a))(g(x)−g−2(a))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g(x)−g−2(a))μ;˜p)f(g−2(x))h(g−2(x))g′(x)dx]≤f(g(a))+f(g(b))2⋅∫g−1(g−2(b))g−1(2g2(a)g2(b)g2(a)+g2(b))(g−2(b)−g(x))αk−1Eγ,δ,v,cμ,α,l(ˉˉw(g−2(b)−g(x))μ;˜p)h(g−2(x))g′(x)dx. |
Corollary 8. The aforementioned k -fractional inequalities are further connected with already known results as follows:
(i) By setting k = 1 in Remark 9 (i), Theorem 2.6 of [14] is obtained.
(ii) By setting k = 1 in Remark 9 (ii), Theorem 2.6 of [15] is obtained.
(iii) By setting k = 1 in Remark 9 (iii), Theorem 2.10 of [17] is obtained.
Corollary 9. When we set w = \tilde{p} = 0{\rm, \; }p = -1 and g = I in Theorem 2.4, then we get the following inequalities.
\begin{equation} \begin{split} & f\left(\frac{2ab}{a+b} \right)\int _{\frac{2ab}{a+b} }^{\frac{1}{b}}\left(\frac{1}{b} -x\right)^{\frac{\alpha}{k}-1} h\left(x^{-1} \right)dx \\ & \leq \frac{1}{2} \left[\int _{\frac{2ab}{a+b} }^{\frac{1}{b}}\left(\frac{1}{b} -x\right)^{\frac{\alpha}{k}-1} f\left(x^{-1} \right)h\left(x^{-1} \right)dx+\int _{\frac{1}{a}}^{\frac{2ab}{a+b} }\left(x-\frac{1}{a} \right)^{\frac{\alpha}{k}-1} f\left(x^{-1} \right)h\left(x^{-1} \right)dx\right] \\ & \leq \frac{f\left(a\right)+f\left(b\right)}{2} \int _{\frac{2ab}{a+b} }^{\frac{1}{b}}\left(\frac{1}{b} -x\right)^{\frac{\alpha}{k}-1} h\left(x^{-1} \right)dx. \end{split} \end{equation} | (3.32) |
[1] |
M. Andric, G. Farid, J. Pecaric, A further extension of Mittag-Leffler function, Fract. Calculus Appl. Anal., 21 (2018), 1377–1395. doi: 10.1515/fca-2018-0072. doi: 10.1515/fca-2018-0072
![]() |
[2] |
G. Farid, A unified integral operator and further its consequences, Open J. Math. Anal., 4 (2020), 1–7. doi: 10.30538/psrp-oma2020.0047. doi: 10.30538/psrp-oma2020.0047
![]() |
[3] |
M. Yussouf, G. Farid, K. A. Khan, C. Y. Jung, Hadamard and Fejér-Hadamard inequalities for further generalized fractional integrals involving Mittag-Leffler functions, J. Math., 2021 (2021), 5589405. doi: 10.1155/2021/5589405. doi: 10.1155/2021/5589405
![]() |
[4] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, A contemporary approach, New York, Springer, 2006. |
[5] |
I. Iscan, Ostrowski type inequalities for p-convex functions, NTMSCI, 4 (2016), 140–150. doi: 10.20852/NTMSCI.2016318838. doi: 10.20852/NTMSCI.2016318838
![]() |
[6] |
M. Kunt, I. Iscan, Hermite-Hadamard-Fejér type inequalities for p-convex functions via fractional integrals, Iran J. Sci. Technol. Trans. Sci., 42 (2018), 2079–2089. doi: 10.1016/j.ajmsc.2016.11.001. doi: 10.1016/j.ajmsc.2016.11.001
![]() |
[7] | B. G. Pachpatte, Mathematical inequalities, Elsevier, volume 67, 2005. |
[8] | L. Fejér, Uberdie Fourierreihen II, Math Naturwiss Anz Ungar. Akad. Wiss, 24 (1906), 369–390. |
[9] | T. Tunç, H. Budak, F. Usta, M. Z. Sarikaya, On new generalized fractional integral operators and related fractional inequalities, Konuralp J. Math., 8 (2020), 268–278. |
[10] | S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[11] | R. K. Raina, On generalized wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203. |
[12] |
A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for (k, h)-Riemann-Liouville fractional integral, NTMSCI, 4 (2016), 138–146. doi: 10.20852/ntmsci.2016217824. doi: 10.20852/ntmsci.2016217824
![]() |
[13] | W. Nazeer, G. Farid, Z. Salleh, H. Yasmeen, Generalized Riemann-Liouville fractional integral inequalities of Hadamard-type for (\alpha, h-m)-p-convex functions (submitted). |
[14] |
G. Abbas, G. Farid, Hadamard and Fejér-Hadamard type inequalities for harmonically convex functions via generalized fractional integrals, J. Anal., 25 (2017), 107–119. doi: 10.1007/s41478-017-0032-y. doi: 10.1007/s41478-017-0032-y
![]() |
[15] | G. Farid, A. U. Rehman, S. Mehmood, Hadamard and Fejér-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function, J. Math. Comput. Sci., 8 (2018), 630–643. |
[16] |
I. Iscan, S. Wu, Hemite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. doi: 10.1016/j.amc.2014.04.020. doi: 10.1016/j.amc.2014.04.020
![]() |
[17] |
X. Qiang, G. Farid, M. Yussouf, K. A. Khan, A. U. Rehman, New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1–13. doi: 10.1186/s13660-020-02457-y. doi: 10.1186/s13660-020-02457-y
![]() |
[18] | G. Farid, G. Abbas, Generalizations of some Hermite-Hadamard-Fejér type inequalities for p-convex functions via generalized fractional integrals, J. Fract. Calculus Appl., 9 (2018), 56–76. |
1. | Xiujun Zhang, Ghulam Farid, Ayşe Kübra Demirel, Chahn Yong Jung, Muhammad Arif, ( p , h )-Convex Functions Associated with Hadamard and Fejér-Hadamard Inequalities via k -Fractional Integral Operators, 2022, 2022, 2314-8888, 1, 10.1155/2022/3832330 | |
2. | Tao Yan, Ghulam Farid, Ayşe Kübra Demirel, Kamsing Nonlaopon, Sun Young Cho, Further on Inequalities for α , h − m -Convex Functions via k -Fractional Integral Operators, 2022, 2022, 2314-4785, 1, 10.1155/2022/9135608 | |
3. | Wenbo Xu, Muhammad Imran, Faisal Yasin, Nazia Jahangir, Qunli Xia, Wasim Ul-Haq, Fractional Versions of Hermite-Hadamard, Fejér, and Schur Type Inequalities for Strongly Nonconvex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/7361558 | |
4. | Lei Geng, Muhammad Shoaib Saleem, Kiran Naseem Aslam, Rahat Bano, Yusuf Gurefe, Fractional Version of Hermite-Hadamard and Fejér Type Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/2935740 |