Research article

Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function

  • Received: 06 July 2021 Accepted: 30 August 2021 Published: 15 October 2021
  • MSC : 26A51, 26A33, 33E12, 26D15, 26A51, 26B25

  • In this paper, $ k $-fractional integral operators containing further extension of Mittag-Leffler function are defined firstly. Then, the first and second version of Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals are obtained. Finally, by using these generalized $ k $-fractional integrals containing Mittag-Leffler functions, results for $ p $-convex functions are obtained. The results for convex functions can be deduced by taking $ p = 1 $.

    Citation: Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao. Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function[J]. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043

    Related Papers:

  • In this paper, $ k $-fractional integral operators containing further extension of Mittag-Leffler function are defined firstly. Then, the first and second version of Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals are obtained. Finally, by using these generalized $ k $-fractional integrals containing Mittag-Leffler functions, results for $ p $-convex functions are obtained. The results for convex functions can be deduced by taking $ p = 1 $.



    加载中


    [1] M. Andric, G. Farid, J. Pecaric, A further extension of Mittag-Leffler function, Fract. Calculus Appl. Anal., 21 (2018), 1377–1395. doi: 10.1515/fca-2018-0072. doi: 10.1515/fca-2018-0072
    [2] G. Farid, A unified integral operator and further its consequences, Open J. Math. Anal., 4 (2020), 1–7. doi: 10.30538/psrp-oma2020.0047. doi: 10.30538/psrp-oma2020.0047
    [3] M. Yussouf, G. Farid, K. A. Khan, C. Y. Jung, Hadamard and Fejér-Hadamard inequalities for further generalized fractional integrals involving Mittag-Leffler functions, J. Math., 2021 (2021), 5589405. doi: 10.1155/2021/5589405. doi: 10.1155/2021/5589405
    [4] C. P. Niculescu, L. E. Persson, Convex functions and their applications, A contemporary approach, New York, Springer, 2006.
    [5] I. Iscan, Ostrowski type inequalities for $p$-convex functions, NTMSCI, 4 (2016), 140–150. doi: 10.20852/NTMSCI.2016318838. doi: 10.20852/NTMSCI.2016318838
    [6] M. Kunt, I. Iscan, Hermite-Hadamard-Fejér type inequalities for $p$-convex functions via fractional integrals, Iran J. Sci. Technol. Trans. Sci., 42 (2018), 2079–2089. doi: 10.1016/j.ajmsc.2016.11.001. doi: 10.1016/j.ajmsc.2016.11.001
    [7] B. G. Pachpatte, Mathematical inequalities, Elsevier, volume 67, 2005.
    [8] L. Fejér, Uberdie Fourierreihen II, Math Naturwiss Anz Ungar. Akad. Wiss, 24 (1906), 369–390.
    [9] T. Tunç, H. Budak, F. Usta, M. Z. Sarikaya, On new generalized fractional integral operators and related fractional inequalities, Konuralp J. Math., 8 (2020), 268–278.
    [10] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [11] R. K. Raina, On generalized wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203.
    [12] A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for $(k, h)$-Riemann-Liouville fractional integral, NTMSCI, 4 (2016), 138–146. doi: 10.20852/ntmsci.2016217824. doi: 10.20852/ntmsci.2016217824
    [13] W. Nazeer, G. Farid, Z. Salleh, H. Yasmeen, Generalized Riemann-Liouville fractional integral inequalities of Hadamard-type for $(\alpha, h-m)$-$p$-convex functions (submitted).
    [14] G. Abbas, G. Farid, Hadamard and Fejér-Hadamard type inequalities for harmonically convex functions via generalized fractional integrals, J. Anal., 25 (2017), 107–119. doi: 10.1007/s41478-017-0032-y. doi: 10.1007/s41478-017-0032-y
    [15] G. Farid, A. U. Rehman, S. Mehmood, Hadamard and Fejér-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function, J. Math. Comput. Sci., 8 (2018), 630–643.
    [16] I. Iscan, S. Wu, Hemite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. doi: 10.1016/j.amc.2014.04.020. doi: 10.1016/j.amc.2014.04.020
    [17] X. Qiang, G. Farid, M. Yussouf, K. A. Khan, A. U. Rehman, New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1–13. doi: 10.1186/s13660-020-02457-y. doi: 10.1186/s13660-020-02457-y
    [18] G. Farid, G. Abbas, Generalizations of some Hermite-Hadamard-Fejér type inequalities for $p$-convex functions via generalized fractional integrals, J. Fract. Calculus Appl., 9 (2018), 56–76.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2582) PDF downloads(93) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog