Research article

Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions

  • Received: 12 June 2020 Accepted: 27 July 2020 Published: 07 August 2020
  • MSC : 26A51, 26A33, 33E12

  • The objective of this paper is to present the fractional Hadamard and Fejér-Hadamard inequalities in generalized forms. By employing a generalized fractional integral operator containing extended generalized Mittag-Leffler function involving a monotone increasing function, we generalize the well known fractional Hadamard and Fejér-Hadamard inequalities for m-convex functions. Also we study the error bounds of these generalized inequalities. In connection with some published results from presented inequalities are obtained.

    Citation: Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions[J]. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407

    Related Papers:

  • The objective of this paper is to present the fractional Hadamard and Fejér-Hadamard inequalities in generalized forms. By employing a generalized fractional integral operator containing extended generalized Mittag-Leffler function involving a monotone increasing function, we generalize the well known fractional Hadamard and Fejér-Hadamard inequalities for m-convex functions. Also we study the error bounds of these generalized inequalities. In connection with some published results from presented inequalities are obtained.


    加载中


    [1] B. Ahmad, A. Alsaedi, M. Kirane, et al. Hermite-Hadamard, Hermite-Hadamard-Fejér, DragomirAgarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comp. Appl. Math., 353 (2019), 120-129. doi: 10.1016/j.cam.2018.12.030
    [2] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel, Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [3] G. Abbas, G. Farid, Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function, Cogent Math. stat., 3 (2016), 1269589.
    [4] G. Farid, K. A. Khan, N. Latif, et al. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 1-12. doi: 10.1186/s13660-017-1594-6
    [5] M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard type inequalities for m-convex and (α,m)- convex functions, J. Inequal. Pure Appl. Math., 9 (2008), 12.
    [6] M. K. Bakula, J. Pečarić, Note on some Hadamard-type inequalties, J. Ineq. Pure Appl. Math., 5 (2004), 74.
    [7] M. Caputo, M. A. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85.
    [8] H. Chen, U. N. Katugampola, Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. doi: 10.1016/j.jmaa.2016.09.018
    [9] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.
    [10] Z. Dahmani, On Minkowski and Hermit-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51-58. doi: 10.15352/afa/1399900993
    [11] S. S. Dragomir, On some new inequalities of Hermit-Hadamard type for m-convex functions, Tamkang J. Math., 33 (2002), 45-56.
    [12] S. S. Dragomir, G. H. Toader, Some inequalities for m-convex functions, Stud. Univ. Babes-Bolyia. Math., 38 (1993), 21-28.
    [13] G. Farid, A treament of the Hadamard inequality due to m-convexity via generalized fractional integrals, J. Fract. Calc. Appl., 9 (2018), 8-14.
    [14] G. Farid, A unified integral operator and further its consequences, Open J. Math. Anal., 4 (2020), 1-7. doi: 10.30538/psrp-oma2020.0047
    [15] G. Farid, Hadamard and Fejér-Hadamard Inequalities for generalized fractional integrals involving special functions, Kon. J. Math., 4 (2016), 108-113.
    [16] G. Farid, V. N. Mishra, S. Mehmood, Hadamard and the Fejér-Hadamard type inequalities for convex and relative convex function via an extended generalized Mittag-Leffler function, Int. J. Anal. Appl., 17 (2019), 892-903.
    [17] G. Farid, M. Marwan, A. U. Rehman, New mean value theorems and generalization of Hadamard inequality via coordinated m-convex functions, J. Inequal. Appl., 2015 (2015), 1-11. doi: 10.1186/1029-242X-2015-1
    [18] M. Andrić, G. Farid, J. Pečarić, A generalization of Mittag-Leffler function associated with Opial type inequalities due to Mitrinović and Pečarić, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. doi: 10.1515/fca-2018-0072
    [19] G. Abbas, G. Farid, Some integral inequalities of the Hadamard and the Fejér-Hadamard type via generalized fraction integral operator, J. Nonlinear Anal. Optim., 9 (2018), 85-94.
    [20] İ. İşcan, New estimates on generalization of some integral inequalities for (α, m)-convex functions, Contemp. Anal. Appl. Math., 1 (2013), 253-264.
    [21] S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequal. Appl., 2018 (2018), 119.
    [22] Y. C. Kwun, G. Farid, S. Ullah, et al. Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283-126292. doi: 10.1109/ACCESS.2019.2939166
    [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, New York-London, 2006.
    [24] P. T. Mocanu, I. Serb, G. Toader, Real star-convex functions, Stud. Univ. Babes-Bolyai, Math., 43 (1997), 65-80.
    [25] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
    [26] G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended generalized Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. doi: 10.22436/jnsa.010.08.19
    [27] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1-13.
    [28] M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermit-Hadamard inequalities for fractional integrals and related fractional inequalities, J. Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
    [29] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal, Appl. Math. Caomput., 211 (2009), 198-210.
    [30] G. H. Toader, Some generalization of convexity, Proc. Colloq. Approx. Optim, Cluj Napoca(Romania)., (1984), 329-338.
    [31] R. Yongsheng, M. Yussouf, G. Farid, et al. Further generalizations of Hadamard and Fejér-Hadamard inequalities and error estimations, Adv. Differ. Equations, to appear.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3550) PDF downloads(219) Cited by(40)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog