Research article

Role of shape operator in warped product submanifolds of nearly cosymplectic manifolds

  • Received: 18 March 2020 Accepted: 15 July 2020 Published: 07 August 2020
  • MSC : 58C40, 53C42, 35P15

  • In this paper, first, we find the integrability theorems for the invariant and slant distributions which appeared in the concept of semi-slant submanifolds. Utilizing these theorems, we prove that a semi-slant submanifold reduces to be a warped product semi-slant submanifold, provided some necessary and sufficient conditions concerning the shape operators. Also, it is shown that a few earlier results are exceptional cases of this paper results.

    Citation: Rifaqat Ali, Nadia Alluhaibi, Khaled Mohamed Khedher, Fatemah Mofarreh, Wan Ainun Mior Othman. Role of shape operator in warped product submanifolds of nearly cosymplectic manifolds[J]. AIMS Mathematics, 2020, 5(6): 6313-6324. doi: 10.3934/math.2020406

    Related Papers:

  • In this paper, first, we find the integrability theorems for the invariant and slant distributions which appeared in the concept of semi-slant submanifolds. Utilizing these theorems, we prove that a semi-slant submanifold reduces to be a warped product semi-slant submanifold, provided some necessary and sufficient conditions concerning the shape operators. Also, it is shown that a few earlier results are exceptional cases of this paper results.


    加载中


    [1] A. H. Alkhaldi, A. Ali, Classification of warped product submanifolds in Kenmotsu space forms admitting gradient Ricci solitons, Mathematics, 7 (2019), 112.
    [2] A. Ali, P. Laurian-Ioan, Geometric classification of warped products isometrically immersed into Sasakian space forms, Math. Nachr., 292 (2019), 234-251. doi: 10.1002/mana.201700121
    [3] A. Ali, S. Uddin, A. H. Alkhaldi, Characterization theorems on warped product semi-slant submanifolds in Kenmotsu manifolds, Filomat, 33 (2019), 4033-4043. doi: 10.2298/FIL1913033A
    [4] A. Ali, C. Ozel, Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750042.
    [5] A. Ali, P. Laurian-Ioan, Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions, J. Geom. Phys., 114 (2017), 276-290. doi: 10.1016/j.geomphys.2016.12.001
    [6] A. Ali, S. Uddin, W. A. M. Othman, Geometry of warped product pointwise semi-slant submanifolds of Kaheler manifolds, Filomat, 31 (2017), 3771-3788. doi: 10.2298/FIL1712771A
    [7] A. Ali, W. A. M. Othman, C. Ozel, et al. A geometric inequality for warped product pseudo-slant submanifolds of nearly Sasakian manifolds, C. R. Acad. Bulgare Sci., 70 (2017), 175-182.
    [8] A. Ali, W. A. M. Othman, C. Ozel, Some inequalities for warped product pseudo-slant submanifolds of nearly Kenmotsu manifolds, J. Inequal. Appl., 2015, 2015.
    [9] F. R. Al-Solamy, S. Uddin, Warped product immersions with slant factor in Sasakian manifolds, Public. Math. Debreec., 91 (2017), 331-348. doi: 10.5486/PMD.2017.7640
    [10] D. E. Blair, Riemannian geometry of contact and symplectic manifold, Progress in Mathematics vol. 203, Birkhauser. Boston Inc., Boston, 2010.
    [11] D. E. Blair, D. K. Showers, Almost contact manifolds with Killing structures tensors II, J. Differ. Geom., 9 (1974), 577-582. doi: 10.4310/jdg/1214432556
    [12] R. L. Bishop, B. O'Neil, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-9. doi: 10.1090/S0002-9947-1969-0251664-4
    [13] J. L. Cabrerizo, A. Cabrerizo, L. M. Fernandez, et al. Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125-138. doi: 10.1017/S0017089500010156
    [14] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, et al. Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata, 78 (1999), 183-199. doi: 10.1023/A:1005241320631
    [15] B. Y. Chen, Geometry of warped product CR-submanifold in Kaehler manifolds, Monatsh. Math., 133 (2001), 177-195. doi: 10.1007/s006050170019
    [16] B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, Singapore, World Scientific, 2017.
    [17] H. Endo, On the curvature tensor of nearly cosymplectic manifolds of constant φ-sectional curvature, Ann. St. Univ. Iasi., 51 (2005), 439-554.
    [18] S. Hiepko, Eine inner kennzeichungder verzerrten produckt, Math. Ann., 244 (1979), 209-215.
    [19] K. A. Khan, V. A. Khan, S. Uddin, Warped product submanifolds of cosymplectic manifolds, Balkan J. Geom. Appl., 13 (2008), 55-65.
    [20] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie., 39 (1996), 183- 198.
    [21] N. Papaghiuc, Semi-slant submanifold of Kaehler manifold, An. St. Univ. Al. I. Cuza. Iasi, 40 (1994), 55-61.
    [22] S. Uddin, A. Mustafa, B. R. Wong, et al. A geometric inequality for warped product semi-slant submanifolds of nearly cosymplectic manifolds, Rev. Un. Mat. Argentina., 55 (2014), 55-69
    [23] S. Uddin, C. Ozel, A classification theorem on totally umbilical submanifolds in a cosymplectic manifold, Hecetppe J. Math. Stat., 43 (2014), 635-640.
    [24] S. Uddin, S. H. Kon, M. A. Khan, et al. Warped product semi-invariant submanifolds of nearly cosymplectic manifolds, Math. Probl. Eng. 2011., (2011): Article ID 230374.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3102) PDF downloads(164) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog