The aim of this paper is to present the bounds of k-fractional integrals containing the Mittag-Leffler function. For establishing these bounds, a generalized convexity namely strongly exponentially (α,h−m)−p-convexity is utilized. The results of this article provide many new fractional inequalities for several types of fractional integrals and various kinds of convexities. Moreover, an identity is established which helps in proving a Hadamard type inequality.
Citation: Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab. k-Fractional inequalities associated with a generalized convexity[J]. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
[1] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[2] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[3] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[4] | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen . On boundedness of fractional integral operators via several kinds of convex functions. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052 |
[5] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[6] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[7] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[8] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[9] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[10] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
The aim of this paper is to present the bounds of k-fractional integrals containing the Mittag-Leffler function. For establishing these bounds, a generalized convexity namely strongly exponentially (α,h−m)−p-convexity is utilized. The results of this article provide many new fractional inequalities for several types of fractional integrals and various kinds of convexities. Moreover, an identity is established which helps in proving a Hadamard type inequality.
Special functions are important in the study of real analysis, geometry, functional analysis, physics and differential equations. The Mittag-Leffler function is one of them and plays a vital role in the study of fractional analysis. It is actually a generalization of the exponential function with the help of the gamma function. The role of this function in fractional differential equations is equally as important as the role of the exponential function in the study of differential equations. The Mittag-Leffler function is also used to define fractional integral operators of different types, which are further utilized in solving problems in diverse fields of science and engineering. In this paper, we are interested in producing fractional integral inequalities for fractional integrals containing a generalized extended Mittag-Leffler function.
Fractional integrals (FIs) are very useful in the advancement of fractional inequalities. A large number of classical inequalities (such as Hadamard [1], Chebyshev [2], Grüss [3], Ostrowski [4] and Pólya-Szegö [5] inequalities etc.) exist in literature for several kinds of FIs. For example, Sarikaya and Yildirim [6] derived Hadamard type inequalities for Riemann-Liouville FIs. Almutairi and Kılıçman [7] gave the Hadamard inequality and related integral inequalities for Katugampola type FIs. Adil et al. [8] established Hadamard type inequalities for conformable FIs. Belarbi and Dahmani [9] proved the Chebyshev type inequalities for Riemann-Liouville integrals. Habib et al. [10] established Chebyshev type integral inequalities for generalized k-fractional conformable integrals. Set et al. [11] gave Chebyshev type inequalities for generalized FIs involving a Mittag-Leffler function. Tariboon et al. [12] derived Grüss type integral inequalities for Riemann-Liouville integrals. Mubeen and Iqbal [13] established Grüss type integral inequalities for generalized Riemann-Liouville (k,r)-integrals. Habib et al. [14] gave Grüss type integral inequalities for generalized (k,s)-conformable integrals. Basci and Baleanu [15] derived Ostrowski type inequalities for ψ-Hilfer FIs. Gürbüz et al. [16] gave Ostrowski type inequalities for Katugampola FIs. Kwun et al. [17] established Ostrowski type inequalities for generalized Riemann-Liouville k-FIs. They also gave the error bounds of the Hadamard inequality. Ntouyas et al. [18] derived Pólya-Szegö and Chebyshev type inequalities for Riemann-Liouville FIs. Rashid et al. [19] proved Pólya-Szegö and Chebyshev type inequalities via generalized k-FIs. Du et al. [20] derived Bullen-type inequalities via generalized fractional integrals.
With motivation from the above articles, we intend to produce integral inequalities by applying a generalized convexity given in Definition 2.2 and utilizing fractional integrals given in Eqs (2.1) and (2.2). In the next section, preliminary definitions are given which will contribute in establishing the results of this paper.
Recently, Zhang et al. [21] established Pólya-Szegö and Chebyshev type inequalities via generalized k-FIs involving an extended Mittag-Leffler function. In the following we give the definition of generalized k-FIs directly linked with definitions of many well-known FIs.
Definition 2.1. Generalized k-FIs: [21] Let U be a positive and integrable function and V be a differentiable and strictly increasing function such that U,V:[η,ζ]→R with 0<η<ζ. Also let φ,ρ,ϑ,r,Ψ∈C,ς,ϵ,Υ≥0 with k>0 and 0<μ≤ϵ+ς. Then for σ∈[η,ζ],
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U)(λ;Υ)=∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)U(σ)d(V(σ)), | (2.1) |
and
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−U)(λ;Υ)=∫ζλ(V(σ)−V(λ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(σ)−V(λ))ςk;Υ)U(σ)d(V(σ)), | (2.2) |
are called generalized k-FIs involving the following Mittag-Leffler function:
Eρ,ϵ,μ,rς,Ψ,φ,k(σ;Υ)=∞∑n=0βp(ρ+nμ,r−ρ)β(ρ,r−ρ)(r)nμkΓk(ςn+Ψ)σn(φ)nϵ. | (2.3) |
Remark 2.1. The FIs given in Eqs (2.1) and (2.2) represent several well-known FIs which already exist in the literature. For example, for k=1, the FIs defined in [22] are achieved. For k=1 and V(λ)=λ, the FIs defined in [23] are achieved. For k=1, V(λ)=λ and Υ=0, the FIs defined in [24] are achieved. For k=1, V(λ)=λ and ϵ=ϑ=1, the FIs defined in [25] are achieved. For k=1, V(λ)=λ, Υ=0 and ϵ=ϑ=1, the FIs defined in [26] are achieved. For k=1, V(λ)=λ, Υ=0 and μ=ϵ=ϑ=1, the FIs defined in [27] are achieved. For k=1, V(λ)=λΨΨ, Ψ>0 and ϑ=Υ=0, the FIs defined in [28] are achieved. For k=1, V(λ)=lnλ and ϑ=Υ=0, the FIs defined in [29] are achieved. For V(λ)=λΨ+1Ψ+1 and ϑ=Υ=0, the FIs defined in [30] are achieved. For k=1, V(λ)=λΨ+ΦΨ+Φ and ϑ=Υ=0, the FIs defined in [31] are achieved. For V(λ)=(λ−η)ΨΨ, Ψ>0 in Eq (2.1) and V(λ)=−(ζ−λ)ΨΨ, Ψ>0 in Eq (2.2) with ϑ=Υ=0, the FIs defined in [10] are achieved. For V(λ)=(λ−η)ΨΨ, Ψ>0 in Eq (2.1) and V(λ)=−(ζ−λ)ΨΨ, Ψ>0 in Eq (2.2) with k=1 and ϑ=Υ=0, the FIs defined in [32] are achieved. For ϑ=Υ=0, the FIs defined in [17] are achieved. For ϑ=Υ=0 and k=1, the FIs defined in [29] are achieved. For ϑ=Υ=0 and V(λ)=λ, the FIs defined in [33] are achieved. For ϑ=Υ=0, V(λ)=λ and k=1, the classical Riemann-Liouville FIs are achieved.
For a detailed study on different kinds of fractional integrals and their applications, refer to [29,34,35,36,37].
From the k-FIs defined in Eqs (2.1) and (2.2), one can have
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+1)(λ;Υ)=k(V(λ)−V(η))ΨkEρ,ϵ,μ,rς,Ψ+k,φ,k(ϑ(V(λ)−V(η))ςk;Υ):=JΨk,η+(λ;Υ), | (2.4) |
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−1)(λ;Υ)=k(V(ζ)−V(λ))ΨkEρ,ϵ,μ,rς,Ψ+k,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ):=JΨk,ζ−(λ;Υ). | (2.5) |
Convexity also plays an important role in the advancement of fractional inequalities. Its generalizations and extensions have been defined in various ways. In literature, a large number of classical fractional inequalities exist for various kinds of convexities. For example, Liu [38] proved the Ostrowski type inequalities for Riemann-Liouville FIs via h-convex functions. Chen [39] derived Hadamard type inequalities for Riemann-Liouville FIs via two kinds of convexities. Kang et al. [40] gave Hadamard and Fejér-Hadamard type inequalities for generalized FIs involving a Mittag-Leffler function via (h−m)-convex functions. For further details related to the classical fractional inequalities, we refer the readers to [41].
Next, we give the definition of strongly exponentially (α,h−m)−p-convex functions.
Definition 2.2. Strongly Exponentially (α,h−m)−p-convexity: [42] A function U:(0,ζ]→R is said to be a strongly exponentially (α,h−m)−p-convex function with modulus ϖ≥0, if U is positive and
U((σηp+(1−σ)ζp)1p)≤h(σα)U(η)eΩη+mh(1−σα)U(ζ)eΩζ−ϖmh(σα)h(1−σα)|ζp−ηp|2eΩ(ηp+ζp), | (2.6) |
holds, while J⊆R is an interval containing (0,1) and h:J→R be a positive function with (σηp+(1−σ)ζp)1p∈(0,ζ], (α,m)∈[0,1]2, 0<σ<1 and Ω∈R.
Remark 2.2. A function satisfying Eq (2.6) can produces various kinds of convex functions as follows:
(1) For p=1, a strongly exponentially (α,h−m)-convex function is achieved.
(2) For h(σ)=σ, a strongly exponentially (α,m)−p-convex function is achieved.
(3) For m=1, a strongly exponentially (α,h)−p-convex function is achieved.
(4) For α=1, a strongly exponentially (h−m)−p-convex function is achieved.
(5) For p=m=1, a strongly exponentially (α,h)-convex function is achieved.
(6) For α=m=1, a strongly exponentially (h,p)-convex function is achieved.
(7) For p=α=m=1, a strongly exponentially h-convex function is achieved.
(8) For h(σ)=σ, and p=1, a strongly exponentially (α,m)-convex function is achieved.
(9) For h(σ)=σ, and m=1, a strongly exponentially (α,p)-convex function is achieved.
(10) For h(σ)=σ, and α=1, a strongly exponentially (m,p)-convex function is achieved.
(11) For h(σ)=σ, and p=m=1, a strongly exponentially α-convex function is achieved.
(12) For h(σ)=σ, and p=α=1, a strongly exponentially m-convex function is achieved.
(13) For h(σ)=σ, and α=m=1, a strongly exponentially p-convex function is achieved.
(14) For h(σ)=σ, and p=α=m=1, a strongly exponentially convex function is achieved.
In recent years, authors have derived the bounds of several FIs for different kinds of convex functions. For example, Farid [43] established the bounds of Riemann-Liouville FIs for convex functions. Mehmood and Farid [44] gave the bounds of generalized Riemann-Liouville k-FIs for m-convex functions. Yu et al. [45] proved the bounds of generalized FIs involving the Mittag-Leffler function for strongly exponentially (α,h−m)-convex functions.
This paper aims to derive the bounds of generalized k-FIs for strongly exponentially (α,h−m)−p-convex functions. In the upcoming section, first we derive the bounds of k-FIs presented in Eqs (2.1) and (2.2) for strongly exponentially (α,h−m)−p-convex functions satisfying the Eq (2.6). Then an identity is proved to derive the Hadamard type inequality for k-FIs via strongly exponentially (α,h−m)−p-convex functions. The presented results provide several bounds of various FIs and convex functions by using convenient substitutions.
In this section, we first state and prove the following theorem which provides upper bounds of generalized fractional integrals. After that, a modulus inequality is proved in Theorem 3.2. A Hadamard type inequality is proved in Theorem 3.3 by first applying a symmetry like condition stated in Lemma 3.1.
Theorem 3.1. Let U,V:[η,ζ]⟶R,η<ζ, such that U be positive, integrable and strongly exponentially (α,h−m)−p-convex, m∈(0,1], and V be differentiable and strictly increasing with V′∈L1[η,ζ]. Then, for h(η)h(ζ)≤h(η+ζ), Ψ,Φ≥k and Ω∈R, we have:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)Xηλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xζλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))], | (3.1) |
where G(σ)=σ1p, Xηλ(h,Qα;V′)=∫10h(Qα)V′(λ−Q(λ−η))dQ, Xηλ(h,1−Qα;V′)=∫10h(1−Qα)V′(λ−Q(λ−η))dQ.
Proof. Under the given assumptions, the following inequalities are valid:
(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)≤(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(σ),η<σ<λ, | (3.2) |
(V(σ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(σ)−V(λ))ςk;Υ)V′(σ)≤(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)V′(σ),λ<σ<ζ. | (3.3) |
By utilizing the strongly exponentially (α,h−m)−p-convexity of U, we obtain:
U((σ)1p)≤h(λ−σλ−η)αU((η)1p)eΩ((η)1p)+mh(1−(λ−σλ−η)α)U((λm)1p)eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α), | (3.4) |
U((σ)1p)≤h(σ−λζ−λ)αU((ζ)1p)eΩ((ζ)1p)+mh(1−(σ−λζ−λ)α)U((λm)1p)eΩ((λm)1p)−ϖ(mζ−λ)2meΩ(ζ+(λ/m))h(σ−λζ−λ)αh(1−(σ−λζ−λ)α). | (3.5) |
From inequalities (3.2) and (3.4), the following inequality is valid:
∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)U((σ)1p)dσ≤(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)∫ληh(λ−σλ−η)αV′(σ)dσ+mU((λm)1p)eΩ((λm)1p)∫ληh(1−(λ−σλ−η)α)V′(σ)dσ−ϖ(λ−mη)2meΩ(η+(λ/m))∫ληh(λ−σλ−η)αh(1−(λ−σλ−η)α)V′(σ)dσ]. |
By utilizing the left integral operator given in Eq (2.1) on the left-hand side and making substitution Q=(λ−σ)/(λ−η) on the right-hand side, we obtain:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)∫10h(Qα)V′(λ−Q(λ−η))dQ+mU((λm)1p)eΩ((λm)1p)∫10h(1−Qα)V′(λ−Q(λ−η))dQ−ϖ(λ−mη)2meΩ(η+(λ/m))∫10h(Qα)h(1−Qα)V′(λ−Q(λ−η))dQ]. |
The above inequality takes the following form:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)Xηλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.6) |
On the other hand, multiplying (3.3) and (3.5), and following the same way as we did for (3.2) and (3.4), the following inequality is valid:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)∫10h(Qα)V′(λ−Q(λ−ζ))dQ+mU((λm)1p)eΩ((λm)1p)∫10h(1−Qα)V′(λ−Q(λ−ζ))dQ−ϖ(mζ−λ)2meΩ(ζ+(λ/m))∫10h(Qα)h(1−Qα)V′(λ−Q(λ−ζ))dQ]. |
The above inequality takes the following form:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xζλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.7) |
By adding inequalities (3.6) and (3.7), inequality (3.1) is obtained.
Corollary 3.1. For Ψ=Φ in (3.1), the following inequality is valid:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)+(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)Xηλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xζλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.8) |
In the following, we give the modulus inequality for k-FIs via strongly exponentially (α,h−m)−p-convex functions.
Theorem 3.2. Let U,V:[η,ζ]⟶R, such that U be positive, integrable and |U′| be strongly exponentially (α,h−m)−p-convex, m∈(0,1], and V be differentiable and strictly increasing with V′∈L1[η,ζ]. Then, for h(η)h(ζ)≤h(η+ζ), Ψ,Φ≥k and Ω∈R, we have:
|(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ)|≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[|U′((ζ)1p)|eΩ((ζ)1p)Xζλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))], | (3.9) |
where
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ):=∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)U′((σ)1p)dσ |
and
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ):=∫ζλ(V(σ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(σ)−V(λ))ςk;Υ)V′(σ)U′((σ)1p)dσ. |
Proof. By utilizing the strongly exponentially (α,h−m)−p-convexity of |U′|, the following inequality holds:
|U′((σ)1p)|≤h(λ−σλ−η)α|U′((η)1p)|eΩ((η)1p)+mh(1−(λ−σλ−η)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α). | (3.10) |
The above inequality takes the following form:
−(h(λ−σλ−η)α|U′((η)1p)|eΩ((η)1p)+mh(1−(λ−σλ−η)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α))U′((σ)1p)≤(h(λ−σλ−η)α|U′((η)1p)|eΩ((η)1p)+mh(1−(λ−σλ−η)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α)). | (3.11) |
Now, multiplying inequality (3.2) with the right-hand inequality of (3.11) and integrating over [η,λ], we obtain:
∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)U′((σ)1p)dσ≤(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)(|U′((η)1p)|eΩ((η)1p)∫ληh(λ−σλ−η)αV′(σ)dσ+m|U′((λm)1p)|eΩ((λm)1p)∫ληh(1−(λ−σλ−η)α)V′(σ)dσ−ϖ(λ−mη)2meΩ(η+(λ/m))∫ληh(λ−σλ−η)αh(1−(λ−σλ−η)α)V′(σ)dσ). | (3.12) |
After simplifying the inequality (3.12), we get
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.13) |
By using the left-hand inequality of (3.11) and following in the same way as for the right-hand inequality, we obtain:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)≥−(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.14) |
From inequalities (3.13) and (3.14), we have:
|(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)|≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.15) |
Again, by utilizing the strongly exponentially (α,h−m)−p-convexity of |U′|, we have
|U′((σ)1p)|≤h(σ−λζ−λ)α|U′((ζ)1p)|eΩ((ζ)1p)+mh(1−(σ−λζ−λ)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(mζ−λ)2meΩ(ζ+(λ/m))h(σ−λζ−λ)αh(1−(σ−λζ−λ)α). | (3.16) |
Following in the same way as was done for (3.2) and (3.10), from (3.3) and (3.16), we obtain:
|(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ)|≤(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[|U′((ζ)1p)|eΩ((ζ)1p)Xζλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.17) |
By adding inequalities (3.15) and (3.17), inequality (3.9) is obtained.
Corollary 3.2. For Ψ=Φ in (3.9), the following inequality is valid:
|(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)+(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ)|≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[|U′((ζ)1p)|eΩ((ζ)1p)Xζλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.18) |
The following identity is useful to prove the Hadamard type inequality.
Lemma 3.1. Let U:[η,mζ]→R,η<mζ, be a strongly exponentially (α,h−m)−p-convex function. For m∈(0,1], if
U((λ)1p)eΩ((λ)1p)=U((ηp+mζp−λ)1pm)eΩ((ηp+mζp−λ)1pm) | (3.19) |
holds, then we have:
U((ηp+mζp2)1p)≤U((λ)1p)eΩ((λ)1p)(h(12α)+mh(1−12α))−ϖmh(12α)h(1−12α)(ηp+mζp−λ−mλ)2eΩ(ηp+mζp+λ(m+1)m). | (3.20) |
Proof. The following identity is useful:
(ηp+mζp2)1p=[12((λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)1p)p+m(1−12)((λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm)1p)p]1p. | (3.21) |
By utilizing the strongly exponentially (α,h−m)−p-convexity of U, we obtain:
U((ηp+mζp2)1p)≤h(12α)U((λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)1p)eΩ((λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)1p)+mh(1−12α), | (3.22) |
U((λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm)1p)eΩ((λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm)1p)−ϖmh(12α)h(1−12α)(λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm−λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)2eΩ(λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm+λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)=h(12α)U((λ)1p)eΩ((λ)1p)+mh(1−12α)U((ηp+mζp−λ)1pm)eΩ((ηp+mζp−λ)1pm)−ϖmh(12α)h(1−12α)(ηp+mζp−λ−mλ)2eΩ(ηp+mζp+λ(m+1)m). | (3.23) |
By using the condition given in Eq (3.19), inequality (3.20) is obtained.
In the following, we give the Hadamarad type inequality for k-FIs via strongly exponentially (α,h−m)−p-convex functions.
Theorem 3.3. With the same conditions on U, V and h as were taken in Theorem 3.1, and in addition if (3.19) holds, then we have:
A(Ω)(h(12α)+mh(1−12α))[U((ηp+mζp2)1p)(JΨk,η+(ζ;Υ)+JΦk,ζ−(η;Υ))+ϖmh(12α)h(1−12α)((kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(ηp+mζp−λ−mλ)2)(ζ;Υ)eΩ((mζp+ηp−ζp)/m)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(ηp+mζp−λ−mλ)2)(η;Υ)eΩ(ζp))]≤(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)((V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)+(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ))[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)], | (3.24) |
where G(σ)=σ1p, A(Ω)=eΩη when Ω≥0 and A(Ω)=eΩζ when Ω<0.
Proof. Under the given assumptions, the following inequalities are valid:
(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)≤(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)V′(λ),λ∈[η,ζ], | (3.25) |
(V(ζ)−V(λ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)V′(λ)≤(V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)V′(λ)λ∈[η,ζ]. | (3.26) |
By utilizing the strongly exponentially (α,h−m)−p-convexity of U, we obtain:
U((λ)1p)≤h(λ−ηζ−η)αU((ζ)1p)eΩ((ζ)1p)+mh(1−(λ−ηζ−η)α)U((ηm)1p)eΩ(ηm)1p−ϖ(η−mζ)2meΩ(ζ+ηm)h(λ−ηζ−η)αh(1−(λ−ηζ−η)α). | (3.27) |
From inequalities (3.25) and (3.27), the following inequality is valid:
∫ζη(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)U((λ)1p)dλ≤(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)∫ζηh(λ−ηζ−η)αV′(λ)dλ+mU((ηm)1p)eΩ(ηm)1p∫ζηh(1−(λ−ηζ−η)α)V′(λ)dλ−ϖ(η−mζ)2meΩ(ζ+ηm)∫ζηh(λ−ηζ−η)αh(1−(λ−ηζ−η)α)V′(λ)dλ]. |
By utilizing the right integral operator (2.2) on the left-hand side and making substitution Q=(λ−η)/(ζ−η) on the right-hand side, we obtain:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)∫10h(Qα)V′(η+Q(ζ−η))dQ+mU((ηm)1p)eΩ(ηm)1p∫10h(1−Qα)V′(η+Q(ζ−η))dQ−ϖ(η−mζ)2meΩ(ζ+ηm)∫10h(Qα)h(1−Qα)V′(η+Q(ζ−η))dQ]. | (3.28) |
The above inequality takes the following form:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)]. | (3.29) |
Similarly, from inequalities (3.26) and (3.27), after simplification the following inequality is obtained:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)≤(ζ−η)(V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)]. | (3.30) |
By adding inequalities (3.29) and (3.30), we obtain:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)((V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)+(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ))[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)]. | (3.31) |
Now, multiplying the inequality (3.20) with (V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ) and integrating over [η,ζ], we have
U((ηp+mζp2)1p)∫ζη(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)dλ≤(h(12α)+mh(1−12α))∫ζη(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)×V′(λ)U((λ)1p)eΩ((λ)1p)dλ−ϖmh(12α)h(1−12α)∫ζη(V(λ)−V(η))Φk−1×Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)(ηp+mζp−λ−mλ)2eΩ(ηp+mζp+λ(m+1)m)dλ. | (3.32) |
By utilizing the right integral operator defined in Eq (2.2) and inequality (2.5), we obtain:
\begin{align} &\quad\frac{\mathcal{A}(\Omega)}{\bigg(h\bigg(\frac{1}{2^{\alpha}}\bigg) + mh\bigg(1-\frac{1}{2^{\alpha}}\bigg)\bigg)}\bigg(\mathcal{U}\bigg(\left(\frac{{\eta}^p+m{\zeta}^p}{2}\right)^\frac{1}{p}\bigg) \mathcal{J}_{\frac{\Phi}{k},{\zeta}^{-}}(\eta;\Upsilon)+\frac{\varpi}{m e^{\Omega(\zeta^p)}}h\left(\frac{1}{2^\alpha}\right) \\ &\nonumber\times h\left(1-\frac{1}{2^\alpha}\right) \bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Phi,\varphi,\vartheta,{\zeta}^{-}} ^{\rho,\epsilon,\mu,r} \big({\eta}^p+m{\zeta}^p-\lambda-m\lambda\big)^2\bigg) (\eta;\Upsilon)\bigg)\leq \bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Phi,\varphi,\vartheta,{\zeta}^{-}} ^{\rho,\epsilon,\mu,r} \mathcal{U}\circ\mathcal{G}\bigg) (\eta;\Upsilon)\nonumber. \end{align} | (3.33) |
Similarly, multiplying inequality (3.20) with (\mathcal{V}(\zeta)-\mathcal{V}(\lambda))^{\frac{\Psi}{k}-1} E_{\varsigma, \Psi, \varphi, k}^{\rho, \epsilon, \mu, r} \bigg(\vartheta(\mathcal{V}(\zeta)-\mathcal{V}(\lambda))^{\frac{\varsigma}{k}}; \Upsilon\bigg) \mathcal{V}'(\lambda) and integrating over [\eta, \zeta] , and then, by utilizing the left integral operator defined in Eq (2.1) and inequality (2.4), we obtain:
\begin{align} &\quad \frac{\mathcal{A}(\Omega)}{\bigg(h\bigg(\frac{1}{2^{\alpha}}\bigg) + mh\bigg(1-\frac{1}{2^{\alpha}}\bigg)\bigg)}\bigg(\mathcal{U}\bigg(\left(\frac{{\eta}^p+m{\zeta}^p}{2}\right)^\frac{1}{p}\bigg) \mathcal{J}_{\frac{\Psi}{k},{\eta}^{+}}(\zeta;\Upsilon)+\frac{\varpi}{m e^{\Omega((m\zeta^p+\eta^p-\zeta^p)/m)}}h\left(\frac{1}{2^\alpha}\right) \\&\nonumber \times h\left(1-\frac{1}{2^\alpha}\right) \bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\eta}^{+}} ^{\rho,\epsilon,\mu,r} \big({\eta}^p+m{\zeta}^p-\lambda-m\lambda\big)^2\bigg) (\zeta;\Upsilon)\bigg)\leq \bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\eta}^{+} }^{\rho,\epsilon,\mu,r} \mathcal{U}\circ\mathcal{G}\bigg) (\zeta;\Upsilon)\nonumber. \end{align} | (3.34) |
By adding inequalities (3.33) and (3.34), we obtain:
\begin{align} & \frac{\mathcal{A}(\Omega)}{\bigg(h\bigg(\frac{1}{2^{\alpha}}\bigg) + mh\bigg(1-\frac{1}{2^{\alpha}}\bigg)\bigg)}\left[\mathcal{U}\bigg(\left(\frac{{\eta}^p+m{\zeta}^p}{2}\right)^\frac{1}{p}\bigg)\big(\mathcal{J}_{\frac{\Psi}{k},{\eta}^{+}}(\zeta;\Upsilon)+ \mathcal{J}_{\frac{\Phi}{k},{\zeta}^{-}}(\eta;\Upsilon)\big)\right. \\&\nonumber \left.+\frac{\varpi}{m}h\left(\frac{1}{2^\alpha}\right) h\left(1-\frac{1}{2^\alpha}\right)\left(\frac{\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\eta}^{+}} ^{\rho,\epsilon,\mu,r} \big({\eta}^p+m{\zeta}^p-\lambda-m\lambda\big)^2\bigg) (\zeta;\Upsilon)}{e^{\Omega((m\zeta^p+\eta^p-\zeta^p)/m)}}\right.\right. \\&\nonumber \left.\left.+\frac{\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Phi,\varphi,\vartheta,{\zeta}^{-}} ^{\rho,\epsilon,\mu,r} \big({\eta}^p+m{\zeta}^p-\lambda-m\lambda\big)^2\bigg) (\eta;\Upsilon)}{e^{\Omega(\zeta^p)}}\right)\right] \\&\nonumber \leq\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\eta}^{+} }^{\rho,\epsilon,\mu,r} \mathcal{U}\circ\mathcal{G}\bigg) (\zeta;\Upsilon)\nonumber+\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Phi,\varphi,\vartheta,{\zeta}^{-} }^{\rho,\epsilon,\mu,r} \mathcal{U}\circ\mathcal{G}\bigg) (\eta;\Upsilon)\nonumber. \end{align} | (3.35) |
From inequalities (3.31) and (3.35), inequality (3.24) is obtained.
Corollary 3.3. For \Psi = \Phi in (3.24), the following inequality is valid:
\begin{align} & \frac{\mathcal{A}(\Omega)}{\bigg(h\bigg(\frac{1}{2^{\alpha}}\bigg) + mh\bigg(1-\frac{1}{2^{\alpha}}\bigg)\bigg)}\left[\mathcal{U}\bigg(\left(\frac{{\eta}^p+m{\zeta}^p}{2}\right)^\frac{1}{p}\bigg)\big(\mathcal{J}_{\frac{\Psi}{k},{\eta}^{+}}(\zeta;\Upsilon)+ \mathcal{J}_{\frac{\Psi}{k},{\zeta}^{-}}(\eta;\Upsilon)\big)\right.\\&\left.+\frac{\varpi}{m}h\left(\frac{1}{2^\alpha}\right) h\left(1-\frac{1}{2^\alpha}\right)\left(\frac{\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\eta}^{+}} ^{\rho,\epsilon,\mu,r} \big({\eta}^p+m{\zeta}^p-\lambda-m\lambda\big)^2\bigg) (\zeta;\Upsilon)}{e^{\Omega((m\zeta^p+\eta^p-\zeta^p)/m)}}\right.\right.\\&\left.\left.+\frac{\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\zeta}^{-}} ^{\rho,\epsilon,\mu,r} \big({\eta}^p+m{\zeta}^p-\lambda-m\lambda\big)^2\bigg) (\eta;\Upsilon)}{e^{\Omega(\zeta^p)}}\right)\right]\\\leq&\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\eta}^{+} }^{\rho,\epsilon,\mu,r} \mathcal{U}\circ\mathcal{G}\bigg) (\zeta;\Upsilon)+\bigg(\; _\mathcal{V}^{k}\mathcal{Z}_{\varsigma,\Psi,\varphi,\vartheta,{\zeta}^{-} }^{\rho,\epsilon,\mu,r} \mathcal{U}\circ\mathcal{G}\bigg) (\eta;\Upsilon)\\\leq&(\zeta-\eta)(\mathcal{V}(\zeta)-\mathcal{V}(\eta))^{\frac{\Psi}{k}-1} E_{\varsigma,\Psi,\varphi,k}^{\rho,\epsilon,\mu,r} \bigg(\vartheta(\mathcal{V}(\zeta)-\mathcal{V}(\eta))^{\frac{\varsigma}{k}};\Upsilon\bigg)\\&\bigg[\frac{\mathcal{U}((\zeta)^\frac{1}{p})}{e^{\Omega (({\zeta})^\frac{1}{p})}}\mathcal{X}_\zeta^\eta\bigg(h,\mathcal{Q}^{\alpha};\mathcal{V}'\bigg) + m\frac{\mathcal{U}\left((\frac{\eta}{m})^\frac{1}{p}\right)}{e^{\Omega (\frac{\eta}{m})^\frac{1}{p}}} \mathcal{X}_\zeta^\eta\bigg(h,1-\mathcal{Q}^{\alpha};\mathcal{V}'\bigg)\\&-\frac{\varpi(\eta-m\zeta)^2h(1)\big(\mathcal{V}(\zeta)-\mathcal{V}(\eta)\big)}{m(\zeta-\eta)e^{\Omega(\zeta+\frac{\eta}{m})}}\bigg]. \end{align} | (3.36) |
Remark 3.1. From Theorem 3.1 and Theorem 3.2, many new bounds of several \mathcal{F}\mathcal{I} s (given in Remark 2.1) for various kinds of convex functions (given in Remark 2.2) can be obtained. Similarly, from Theorem 3.3, many new Hadamard type inequalities for several \mathcal{F}\mathcal{I} s (given in Remark 2.1) via various kinds of convex functions (given in Remark 2.2) can be obtained. Further, from Theorem 3.1 for \lambda = \eta and \lambda = \zeta , applications of Theorem 3.1 can be obtained. We leave this for readers.
We investigated the bounds of generalized k - \mathcal{F}\mathcal{I} s that had interesting consequences in particular cases. To derive these bounds, strongly exponentially (\alpha, h-m)-p -convexity was applied in different forms. The results provided a lot of new inequalities for well-known \mathcal{F}\mathcal{I} s by using suitable substitutions. Further, an identity was established and applied to obtain the Hadamard type inequality for generalized k - \mathcal{F}\mathcal{I} s. These integral operators can be further applied to generalize fractional integral equations and integral inequalities.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The research work of the fourth author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1A2C2004874) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry Energy (MOTIE) of the Republic of Korea (No. 20214000000280). The research work of the third author is supported by Project number (RSP2023R440), King Saud University, Riyadh, Saudi Arabia.
Authors declare no conflict of interest.
[1] | J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann, J. Math. Pure Appl., 58 (1983), 171–215. |
[2] | P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98. |
[3] | G. Grüss, Über das maximum des absolten Betrages von \frac{1}{b-a}\int_{a}^{b}f(x)g(x)dx-\frac{1}{b-a}^{2}\int_{a}^{b}f(x)dx\int_{a}^{b}f(x)dx, Math. Z., 39 (1935), 215–226. |
[4] |
A. Ostrowski, Uber die Absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1937), 226–227. https://doi.org/10.1007/BF01214290 doi: 10.1007/BF01214290
![]() |
[5] | G. Pólya, G. Szegö, Aufgaben und Lehrsatze aus der analysis, Heidelberg: Springer Berlin, 1925. https://doi.org/10.1007/978-3-642-61987-8 |
[6] |
M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
![]() |
[7] |
O. Almutairi, A. Kılıçman, New generalized Hermite-Hadamard inequality and related integral inequalities involving Katugampola type fractional integrals, Symmetry, 12 (2020), 568. https://doi.org/10.3390/sym12040568 doi: 10.3390/sym12040568
![]() |
[8] |
M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5
![]() |
[9] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1–12. |
[10] | S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized k-fractional conformable integrals, J. Inequal. Spec. Funct., 9 (2018), 53–65. |
[11] | E. Set, M. E. Özdemir, S. Demirbaş, Chebyshev type inequalities involving extended generalized fractional integral operators, AIMS Mathematics, 5 (2020), 3573–3583. |
[12] | J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Sci., 2014, 2014, 869434. |
[13] |
S. Mubeen, S. Iqbal, Gr\ddot{u}ss type integral inequalities for generalized Riemann-Liouville k-fractional integrals, J. Inequal. Appl., 2016 (2016), 109. https://doi.org/10.1186/s13660-016-1052-x doi: 10.1186/s13660-016-1052-x
![]() |
[14] |
S. Habib, G. Farid, S. Mubeen, Gr\ddot{u}ss type integral inequalities for a new class of k-fractional integrals, Int. J. Nonlinear Anal. Appl., 12 (2021), 541–554. https://doi.org/10.22075/ijnaa.2021.4836 doi: 10.22075/ijnaa.2021.4836
![]() |
[15] |
Y. Basci, D. Baleanu, Ostrowski type inequalities involving \psi-hilfer fractional integrals, Mathematics, 7 (2019), 770. https://doi.org/10.3390/math7090770 doi: 10.3390/math7090770
![]() |
[16] |
M. Gürbüz, Y. Taşdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 42–53. https://doi.org/10.3934/math.2020004 doi: 10.3934/math.2020004
![]() |
[17] |
Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
![]() |
[18] |
S. K. Ntouyas, P. Agarwal, J. Tariboon, On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal., 10 (2016), 491–504. http://doi.org/10.7153/jmi-10-38 doi: 10.7153/jmi-10-38
![]() |
[19] |
S. Rashid, F. Jarad, H. Kalsoom, Y. M. Chu, Pólya-Szegö and Chebyshev types inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 125. https://doi.org/10.1186/s13662-020-02583-3 doi: 10.1186/s13662-020-02583-3
![]() |
[20] |
T. S. Du, C. Y. Luo, Z. J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021), 2150188. https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887
![]() |
[21] |
Z. Zhang, G. Farid, S. Mehmood, K. Nonlaopon, T. Yan, Generalized k-fractional integral operators associated with Pólya-Szegö and Chebyshev types inequalities, Fractal Fract., 6 (2022), 90. https://doi.org/10.3390/fractalfract6020090 doi: 10.3390/fractalfract6020090
![]() |
[22] | S. Mehmood, G. Farid, K. A. Khan, M. Yussouf, New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h, m)-convex function, Eng. Appl. Sci. Lett., 3 (2020), 9–18. |
[23] |
M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377–1395. https://doi.org/10.1515/fca-2018-0072 doi: 10.1515/fca-2018-0072
![]() |
[24] | T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1–13. |
[25] |
G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244–4253. http://doi.org/10.22436/jnsa.010.08.19 doi: 10.22436/jnsa.010.08.19
![]() |
[26] |
H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
![]() |
[27] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15. |
[28] |
H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
![]() |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006). |
[30] |
M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77–89. http://doi.org/10.15672/HJMS.20164512484 doi: 10.15672/HJMS.20164512484
![]() |
[31] |
T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
![]() |
[32] |
F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
![]() |
[33] | S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[34] |
S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130 (2017), 273–286. http://doi.org/10.1016/j.ijleo.2016.10.044 doi: 10.1016/j.ijleo.2016.10.044
![]() |
[35] | S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, N. Senu, A new fractional derivative for differential equation of fractional order under interval uncertainty, Adv. Mech. Eng., 7 (2015). https://doi.org/10.1177/1687814015619138 |
[36] | M. Lazarević, Advanced topics on applications of fractional calculus on control problems, System stability and modeling, WSEAS Press, 2014. |
[37] |
T. S. Du, T. C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Solitons Fractals, 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
![]() |
[38] | W. Liu, Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions, J. Comput. Anal. Appl., 16 (2012), 998–1004. |
[39] |
F. Chen, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 3 (2014), 1–7. http://doi.org/10.1155/2014/173293 doi: 10.1155/2014/173293
![]() |
[40] |
S. M. Kang, G. Farid, W. Nazeer, S. Mehmood, (h, m)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 78. https://doi.org/10.1186/s13660-019-2019-5 doi: 10.1186/s13660-019-2019-5
![]() |
[41] | M. Andrić, G. Farid, J. Pečarić, Analytical inequalities for fractional calculus operators and the Mittag-Leffler function, Element: Zagreb, Croatia, 2021. |
[42] |
X. Zhang, G. Farid, H. Yasmeen, K. Nonlaopon, Some generalized formulas of Hadamard-type fractional integral inequalities, J. Funct. Spaces, 2022 (2022), 3723867. https://doi.org/10.1155/2022/3723867 doi: 10.1155/2022/3723867
![]() |
[43] |
G. Farid, Some Riemann-Liouville fractional integral inequalities for convex functions, J. Anal., 27 (2019), 1095–1102. https://doi.org/10.1007/s41478-018-0079-4 doi: 10.1007/s41478-018-0079-4
![]() |
[44] | S. Mehmood, G. Farid, m-Convex functions associated with bounds of k-fractional integrals, Adv. Inequal. Appl., 2020 (2020), 20. |
[45] |
T. Yu, G. Farid, K. Mahreen, C. Y. Jung, S. H. Shim, On generalized strongly convex functions and unified integral operators, Math. Probl. Eng., 2021 (2021), 6695781. https://doi.org/10.1155/2021/6695781 doi: 10.1155/2021/6695781
![]() |