Research article

$ k $-Fractional inequalities associated with a generalized convexity

  • Received: 31 July 2023 Revised: 28 September 2023 Accepted: 10 October 2023 Published: 19 October 2023
  • MSC : 26A33, 26A51, 33E12

  • The aim of this paper is to present the bounds of $ k $-fractional integrals containing the Mittag-Leffler function. For establishing these bounds, a generalized convexity namely strongly exponentially $ (\alpha, h-m)-p $-convexity is utilized. The results of this article provide many new fractional inequalities for several types of fractional integrals and various kinds of convexities. Moreover, an identity is established which helps in proving a Hadamard type inequality.

    Citation: Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab. $ k $-Fractional inequalities associated with a generalized convexity[J]. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460

    Related Papers:

  • The aim of this paper is to present the bounds of $ k $-fractional integrals containing the Mittag-Leffler function. For establishing these bounds, a generalized convexity namely strongly exponentially $ (\alpha, h-m)-p $-convexity is utilized. The results of this article provide many new fractional inequalities for several types of fractional integrals and various kinds of convexities. Moreover, an identity is established which helps in proving a Hadamard type inequality.



    加载中


    [1] J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann, J. Math. Pure Appl., 58 (1983), 171–215.
    [2] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.
    [3] G. Grüss, Über das maximum des absolten Betrages von $\frac{1}{b-a}\int_{a}^{b}f(x)g(x)dx-\frac{1}{b-a}^{2}\int_{a}^{b}f(x)dx\int_{a}^{b}f(x)dx$, Math. Z., 39 (1935), 215–226.
    [4] A. Ostrowski, Uber die Absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1937), 226–227. https://doi.org/10.1007/BF01214290 doi: 10.1007/BF01214290
    [5] G. Pólya, G. Szegö, Aufgaben und Lehrsatze aus der analysis, Heidelberg: Springer Berlin, 1925. https://doi.org/10.1007/978-3-642-61987-8
    [6] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
    [7] O. Almutairi, A. Kılıçman, New generalized Hermite-Hadamard inequality and related integral inequalities involving Katugampola type fractional integrals, Symmetry, 12 (2020), 568. https://doi.org/10.3390/sym12040568 doi: 10.3390/sym12040568
    [8] M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033–1048. https://doi.org/10.1007/s13398-017-0408-5 doi: 10.1007/s13398-017-0408-5
    [9] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1–12.
    [10] S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized $k$-fractional conformable integrals, J. Inequal. Spec. Funct., 9 (2018), 53–65.
    [11] E. Set, M. E. Özdemir, S. Demirbaş, Chebyshev type inequalities involving extended generalized fractional integral operators, AIMS Mathematics, 5 (2020), 3573–3583.
    [12] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Sci., 2014, 2014, 869434.
    [13] S. Mubeen, S. Iqbal, Gr$\ddot{u}$ss type integral inequalities for generalized Riemann-Liouville $k$-fractional integrals, J. Inequal. Appl., 2016 (2016), 109. https://doi.org/10.1186/s13660-016-1052-x doi: 10.1186/s13660-016-1052-x
    [14] S. Habib, G. Farid, S. Mubeen, Gr$\ddot{u}$ss type integral inequalities for a new class of $k$-fractional integrals, Int. J. Nonlinear Anal. Appl., 12 (2021), 541–554. https://doi.org/10.22075/ijnaa.2021.4836 doi: 10.22075/ijnaa.2021.4836
    [15] Y. Basci, D. Baleanu, Ostrowski type inequalities involving $\psi$-hilfer fractional integrals, Mathematics, 7 (2019), 770. https://doi.org/10.3390/math7090770 doi: 10.3390/math7090770
    [16] M. Gürbüz, Y. Taşdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 42–53. https://doi.org/10.3934/math.2020004 doi: 10.3934/math.2020004
    [17] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
    [18] S. K. Ntouyas, P. Agarwal, J. Tariboon, On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal., 10 (2016), 491–504. http://doi.org/10.7153/jmi-10-38 doi: 10.7153/jmi-10-38
    [19] S. Rashid, F. Jarad, H. Kalsoom, Y. M. Chu, Pólya-Szegö and Chebyshev types inequalities via generalized $k$-fractional integrals, Adv. Differ. Equ., 2020 (2020), 125. https://doi.org/10.1186/s13662-020-02583-3 doi: 10.1186/s13662-020-02583-3
    [20] T. S. Du, C. Y. Luo, Z. J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021), 2150188. https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887
    [21] Z. Zhang, G. Farid, S. Mehmood, K. Nonlaopon, T. Yan, Generalized $k$-fractional integral operators associated with Pólya-Szegö and Chebyshev types inequalities, Fractal Fract., 6 (2022), 90. https://doi.org/10.3390/fractalfract6020090 doi: 10.3390/fractalfract6020090
    [22] S. Mehmood, G. Farid, K. A. Khan, M. Yussouf, New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially $(h, m)$-convex function, Eng. Appl. Sci. Lett., 3 (2020), 9–18.
    [23] M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377–1395. https://doi.org/10.1515/fca-2018-0072 doi: 10.1515/fca-2018-0072
    [24] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1–13.
    [25] G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244–4253. http://doi.org/10.22436/jnsa.010.08.19 doi: 10.22436/jnsa.010.08.19
    [26] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
    [27] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
    [28] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
    [29] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006).
    [30] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77–89. http://doi.org/10.15672/HJMS.20164512484 doi: 10.15672/HJMS.20164512484
    [31] T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
    [32] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [33] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [34] S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130 (2017), 273–286. http://doi.org/10.1016/j.ijleo.2016.10.044 doi: 10.1016/j.ijleo.2016.10.044
    [35] S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, N. Senu, A new fractional derivative for differential equation of fractional order under interval uncertainty, Adv. Mech. Eng., 7 (2015). https://doi.org/10.1177/1687814015619138
    [36] M. Lazarević, Advanced topics on applications of fractional calculus on control problems, System stability and modeling, WSEAS Press, 2014.
    [37] T. S. Du, T. C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Solitons Fractals, 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
    [38] W. Liu, Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for $h$-convex functions, J. Comput. Anal. Appl., 16 (2012), 998–1004.
    [39] F. Chen, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 3 (2014), 1–7. http://doi.org/10.1155/2014/173293 doi: 10.1155/2014/173293
    [40] S. M. Kang, G. Farid, W. Nazeer, S. Mehmood, $(h, m)$-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 78. https://doi.org/10.1186/s13660-019-2019-5 doi: 10.1186/s13660-019-2019-5
    [41] M. Andrić, G. Farid, J. Pečarić, Analytical inequalities for fractional calculus operators and the Mittag-Leffler function, Element: Zagreb, Croatia, 2021.
    [42] X. Zhang, G. Farid, H. Yasmeen, K. Nonlaopon, Some generalized formulas of Hadamard-type fractional integral inequalities, J. Funct. Spaces, 2022 (2022), 3723867. https://doi.org/10.1155/2022/3723867 doi: 10.1155/2022/3723867
    [43] G. Farid, Some Riemann-Liouville fractional integral inequalities for convex functions, J. Anal., 27 (2019), 1095–1102. https://doi.org/10.1007/s41478-018-0079-4 doi: 10.1007/s41478-018-0079-4
    [44] S. Mehmood, G. Farid, $m$-Convex functions associated with bounds of $k$-fractional integrals, Adv. Inequal. Appl., 2020 (2020), 20.
    [45] T. Yu, G. Farid, K. Mahreen, C. Y. Jung, S. H. Shim, On generalized strongly convex functions and unified integral operators, Math. Probl. Eng., 2021 (2021), 6695781. https://doi.org/10.1155/2021/6695781 doi: 10.1155/2021/6695781
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(880) PDF downloads(72) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog