In recent years, many mathematicians researched infinite reciprocal sums of various sequences and evaluated their value by the asymptotic formulas. We study the asymptotic formulas of the infinite reciprocal sums formed as $ \left(\sum^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} \right)^{-1} $ for $ r, s, t \in \mathbb{N^+} $, where the asymptotic formulas are polynomials.
Citation: Zhenjiang Pan, Zhengang Wu. The inverses of tails of the generalized Riemann zeta function within the range of integers[J]. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
In recent years, many mathematicians researched infinite reciprocal sums of various sequences and evaluated their value by the asymptotic formulas. We study the asymptotic formulas of the infinite reciprocal sums formed as $ \left(\sum^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} \right)^{-1} $ for $ r, s, t \in \mathbb{N^+} $, where the asymptotic formulas are polynomials.
[1] | G. Choi, Y. Choo, On the reciprocal sums of products of Fibonacci and Lucas number, Filomat, 32 (2018), 2911–2920. http://dx.doi.org/10.2298/FIL1808911C doi: 10.2298/FIL1808911C |
[2] | W. Hwang, K. Song, A reciprocal sum related to the Riemann zeta function at s = 6, arXiv: 1709.07994. |
[3] | D. Kim, K. Song, The inverses of tails of the Riemann zeta function, J. Inequal. Appl., 2018 (2018), 157. http://dx.doi.org/10.1186/s13660-018-1743-6 doi: 10.1186/s13660-018-1743-6 |
[4] | D. Kim, H. Kim, T. Kim, Some identities on generalized harmonic numbers and generalized harmonic functions, Demonstr. Math., 56 (2023), 20220229. http://dx.doi.org/10.1515/dema-2022-0229 doi: 10.1515/dema-2022-0229 |
[5] | T. Kim, D. Kim, H. Lee, J. Kwon, On some summation formulas, Demonstr. Math., 55 (2022), 1–7. http://dx.doi.org/10.1515/dema-2022-0003 doi: 10.1515/dema-2022-0003 |
[6] | T. Kim, Euler numbers and polynomials associated with Zeta function, Abstr. Appl. Anal., 2008 (2008), 581582. http://dx.doi.org/10.1155/2008/581582 doi: 10.1155/2008/581582 |
[7] | T. Kim, Degenerate Euler zeta function, Russ. J. Math. Phys., 22 (2015), 469–472. http://dx.doi.org/10.1134/S1061920815040068 doi: 10.1134/S1061920815040068 |
[8] | T. Komatsu, On the nearest integer of the sum of reciprocal Fibonacci numbers, Aportaciones Matematicas Investigacion, 20 (2011), 171–184. |
[9] | H. Lee, J. Park, Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers, J. Inequal. Appl., 2020 (2020), 91. http://dx.doi.org/10.1186/s13660-020-02359-z doi: 10.1186/s13660-020-02359-z |
[10] | H. Lee, J. Park, Asymptotic behavior of the inverse of tails of Hurwitz zeta function, J. Korean Math. Soc., 57 (2020), 1535–1549. http://dx.doi.org/10.4134/JKMS.j190789 doi: 10.4134/JKMS.j190789 |
[11] | H. Lee, J. Park, The limit of reciprocal sum of some subsequential Fibonacci number, AIMS Mathematics, 11 (2021), 12379–12394. http://dx.doi.org/10.3934/math.2021716 doi: 10.3934/math.2021716 |
[12] | X. Lin, Some identities related to Riemann zeta-function, J. Inequal. Appl., 2016 (2016), 32. http://dx.doi.org/10.1186/s13660-016-0980-9 doi: 10.1186/s13660-016-0980-9 |
[13] | D. Marques, P. Trojovsky, The proof of a formula concerning the asymptotic behavior of the reciprocal sum of the square of multiple-angle Fibonacci numbers, J. Inequal. Appl., 2022 (2022), 21. http://dx.doi.org/10.1186/s13660-022-02755-7 doi: 10.1186/s13660-022-02755-7 |
[14] | H. Xu, Some computational formulas related the Riemann zeta-function tails, J. Inequal. Appl., 2016 (2016), 132. http://dx.doi.org/10.1186/s13660-016-1068-2 doi: 10.1186/s13660-016-1068-2 |
[15] | Z. Xu, T. Wang, The infinite sum of the cubes of reciprocal Pell numbers, Adv. Differ. Equ., 2013 (2013), 184. http://dx.doi.org/10.1186/1687-1847-2013-184 doi: 10.1186/1687-1847-2013-184 |