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Abstract: In recent years, many mathematicians researched infinite reciprocal sums of various
sequences and evaluated their value by the asymptotic formulas. We study the asymptotic formulas
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of the infinite reciprocal sums formed as (Z,‘f’:n k(kl—ﬂ)s) for r, s, t € N*, where the asymptotic formulas
are polynomials.
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1. Introduction

Throughout the years, many mathematicians have been working on partial infinite sums of
reciprocal linear recurrence sequences.

In 2011, Takao Komatsu [8] researched the nearest integer of the sum of reciprocal Fibonacci
numbers and derived

o0 1 -1

(kZF—k] H=Fn—Fn_1,

o -1
-1y

25|

k=n
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where ||-|| denoted the nearest integer; in other words, [|x]| = [x — %J.
In 2020, Ho-Hyeong Lee and Jong-Do Park [9] gave the concept of asymptotic formulas, which
were more accurate. The conclusions were as follows:
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where a, ~ b, meant lim(a, — b,) = 0. For more results related to the infinite reciprocal sums of linear
n—oo

(1.2)
~F2 = (FiaFr+ (-1

recurrence sequences, see [1, 13, 15] and references therein.

The zeta function {(z) is undoubtedly the most famous function in analytic number theory.
Initially studied by Euler and achieved prominence with Riemann, it abstracted the attention of many
mathematicians. Another well-known sequence harmonic number H, is the sum of the first n terms of
{(z) when z = 1, and the generating function of harmonic numbers } >, H,x" is an important tool to
study the property of H,. Kim [4-7] derived many worthy and interesting results associated with the
zeta function, harmonic number and its generating function, which inspired us deeply.

At the same time, many researchers began to study the tails of well-known functions such as the
Riemann zeta function and the Hurwitz zeta function in [2, 3, 10, 12, 14].

For example, Kim Donggyun and Song Kyunghwan [3] studied the inverses of tails of the Riemann
zeta function. Derived for s on the critical strip 0 < s < 1,

i 1) 21 -2 —-3)", ifniseven, 13
el =21 -2"%)(n—13)*, ifnis odd. ’

Ho-Hyeong Lee and Jong-Do Park [10] dealt with the inverses of tails of Hurwitz zeta function
when s >2, s e Nand 0 < a < 1, and derived
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* — _ s — _ s=I-1 _sAs s _ [s=2+] . . :
where AT | = s—1,A] = Z/:1 xjAl+j, x; = ( ; )BJ and B; are Bernoulli numbers.

In this paper, we extend their asymptotic formulas for the methods and results by considering the
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tails of (Z k=n W) ) (Zk:n [k(kT)]z) ) (Zkzn Taar H)J) and further revealing the property of reciprocal

sums of the various sequences.
2. Main results

Before our conclusion, we define (_’1) = 0 for all i € N*, which will take effect in expressing the
asymptotic formulas in Theorem 3.

Theorem 1. For all m € N, we have
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£ k(k + 1) 2
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Theorem 2. For all m € N, we have
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Theorem 3. Ifr+s—1>0andr,s,t €N, then there exists the unique polynomial
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where
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(r+s—1y 2 2 2 32 2
bris3 = 6 — 7+ 2rsT=2rs+ s — 85" —25)t
+5-3 12(r+s)2(r+s+1)[ s(res—r rs rs+ s —s s)
- 6s(r+ 3rs—rr +3rs> = 2rs = 2r+s5° — §° — 28)t
+ Q2+ 87 s =P+ 12r%5* = 35 = 3r* + 8rs® = 3rs® — 6rs + 25 — 5° — 35%)],
S (e S () !
s sk . r+s— .
k1+k2:i kz—r j:k1+1 ! kl Z bk3 Z b}(ki)
i—r—s+1<ky <r+s-2 k3 +k4:i j:k4
b, _ rky <r+s _ i—r—s+2<k3.kqs<r+s—1
oo 3r+3s—i-3 3r+3s—i-3
r+s—1 . .
Z bj [(i—;{—x) - (l" ts5= 1)(i—r—JS+1)]
J=i—r—s+2
3r+3s—i—-3 ’
+s—k rsc b J +s5—1 +s5—1
5 )tk . r+s— . r+s—
e (%) e ) Y by X b({)+G+s-1) ¥ b
Ok <r+s-2 k3+ky=i J=ks J=1
r<kp<r+s 1 Sk} Jg<r+s—1
by = -
2r+s-1) 2r+s-1)

AIMS Mathematics Volume 8, Issue 12, 28558-28568.



28561

Remark. From Theorem 3, we derive that coefficients b; (0 < j < r + s — 1) are determined by 7, s
and 7. At the same time, if we calculate by by using the representation of b;_,_,,;, there will appear
(”_"1_ 1), (”_Sl_ 2), I (_11) In order to make b, the representation of b;, we give the definition (_’1) = 0 for

i € N* in this paper. Undoubtedly, it satisfies ("gl) = (g) + (_"1) forn e N*.

Corollary 1. If s = 1 and m = 0, we have
oo -1
3 L
i n? 2
Corollary 2. If s =2 and t = 0, we have
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1 5 9, 15 9
(;%) ~3I’l—§l’l +Zl’l—§.

Corollary 3. If s = 2, we have
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3. Proof of theorem

3.1. Proof of Theorem 1

We need to solve several lemmas for the proof.

Lemma 1. Let {a,}, and {b,},. | be sequences of a positive real number with lima, = limb, = 0. If
a, < b, + a,, hold for any n € N*, then we have

(o)
a, < an forne N*.
k=n

Proof. See Lemma 2.1 [11]. O

Lemma 2. Forallt > 2 andt € N, we have

1 1 1
1 1
n+t—-3 nn+t) n+i+;
Proof. It is equivalent with
1 1 1
I nmi D — < 0. (3.1)
l’l+§—§ nn l’l+§+§
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nn+t)-(n+i-Hn+i+1)

The left side = :
(n+4i-Dm+L5+Hnn+1)

A= I

2
7 T

T+ D+ L+ D+

Hence, we have
2

t
——+-<0 forn>2,

4 4
" 1 1 1
— + — forn > 2.
n+s—3 N+ n+ 5+
This completes the proof.
Lemma 3. For all € > 0, there exists Ny > 2, subject to
1 1 1
: > — + forn > N.
l’l+%—§—8 n+s+5;-¢& n(n + 1)

Proof. It is equivalent with

1 1 1
n+%—%—8 n+é+%—8 n(n +1)
2 2 2 1 ! 2
. n+m-m"+m+73)—;-2en+5)+e
The left side = -4 2

l T
(n+35-5-8n-5+35-enn+1)

1_2_2
28n+ts+4 T ¢

- n+i-t-e)n-L+i-ommn+1
We can restrict € < 1 and fix ¢, then we have
2

te+-—-——-&"=0(),
e+4 1 £ (1)

so there exists Ny > 2, subject to

2en+0(1)>0 forn> N,

then
1 1 1

t 1 > t 1 * ’
I’l+§—§—8 n+§+§—8 n(n+t)

which proves (3.2) and completes the proof.

(3.2)
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Proof of Theorem 1.

Case 1. When t > 2.
By Lemmas 1-3, we have for all € > 0, there exists Ny > 2, subject to

o -1
r 1 1 t 1
n+§_§_8<(;n(n+t)] <n+§—§ for n > N, 3.3)
hence
o -1
1
( k(k+t)] BRI Y
in other words,
o -1
1 r 1
» ~(n+5-3)
- k+1) 2 2
Case 2. Whent =1,
= 1 1 1 1
D _ v + o
k=nk(k+1) nn+1l) m+Dm+2) @w©+2)1n+3)
1 1 1 1 1 1
_(;_n+l)+(n+1_n+2)+(n+2_n+3)+
1
=

hence

I k(k+1)

Case 3. When t = 0, the proof is similar with Case 1, and we can easily deduce the result.

3.2. Proof of Theorem 2

Lemma 4. Let f(n,t,&) = 3n> + an® + bn + c and a, b, c are defined in Theorem 2. Then for all & > 0,
there exists Ny > 0, subject to

1 1 1
fmte)  fo+lte  mn+i?

forn > Nj.

Proof. It is equivalent with

1 B 1 B 1 -
f(n,t,e) f(n+1,t,e) n2(n+1)?

0 forn>Nj. (3.4)
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[f(n+1,t,8) — f(n,t,e)ln*(n + 1) — f(n,t,e)f(n+ 1,1,&)
fn,t,e)f(n+ 1,t,&)n*(n + 1)?
B [9n% + 2a + Nn + (a + b + 3)|n*(n + 1)?
fn,t,e)f(n+ 1,t,&)n*(n + 1)?
LG am bt O s 9y s Qat b+ On @bt 4o
f(n,t,e)f(n+ 1,t,&)n*(n + 1)?
B —6en® + A(H)O(n?)
C f,t,e)f(n+ 1,t,e)n2(n + )2

where A(t) is a function with variable 7, then we fix 7 for all € > 0, and there exists Ny > 0, subject to

The left side =

—6en’® + A(HOn?) = —6en’® + On*) <0, forn > N,

hence
1 1 1 <0
f(n,t,e) f(n+1,t,e) n3(n+1)? ’

and this completes the proof. O

Lemma 5. Let g(n, t,€) = 3n’ + an® + bn + ¢ — &, then for all € > 0 there exists N, > 0, subject to

1 1 1
+
gt gntlhe  n2n+i)

forn > N,.

Proof. The proof is similar with Lemma 4, and we can easily deduce the result. O

Proof of Theorem 2. By Lemmas 1, 4 and 5, we have for all € > 0. There exists N3 = max{N, N} > 0,
subject to

(9]

1 1 1
f N3, 3.5
hence
[ee) 1 _1
3n3+an2+bn+c—g<[zm] <3P +ai’+bntc+e,
n3(n
k=n

which is equivalent to

00 -1
1 3 2
(Zm] ~3n’ +an” + bn + c.

k=n

3.3. Proof of Theorem 3

Proof of Theorem 3. According to the method of proving Theorem 2, it is enough to prove that there
exists polynomial
B(n) = b,nl + bl_lnl_l + -+ bll’l + b(),

subject to
1 1 1 o'
B(n) Bn+1) wm+0* BmBn+ Hn'(n+1)

(3.6)
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B(n+1)—- B(n) 1 _[B(n+1)-Bm]n"(n+1)° - Bn)B(n+ 1)

The left side = BmBn+1)  wmtr B(n)B(n + Dn"(n + 1)*

Let

C(n) = B(n+ 1) — B(n),
D) =n"(n+1)°,
E(n) = B(n),
F(n)=Bn+1).
Therefore, it is enough to prove
C(n)D(n) — E(n)F(n) = O(n'™"), (3.7
hence we have the necessary condition (1):
a (C(n)D(n)) = a (E(m)F(n)),
the notation a(f(x)) means the order of f(x), then we have
I=r+s-1. (3.8)

We note the number of coefficients is r + s, then we have

£S5
L

C(n)D(n) =

2r+2s-2 s r+s—1 ]
_ r+s—k i
SN DY A D W A ¢
i=r ky+ky=i, 2 J=ki+1 !

0k <r+s=2,r<ky<r+s

2r+2s-2 s . r+s—1 ] ‘
Z Z (kz B r)trﬂ— 2 Z bj(k )n'

k1+k2—1 j:k1+1 1

E(n)F(n>=[m_lbin’)[ﬁi1 by [i (3)"]]]:(21 ](Zl [Zl b](é)] ]

and

i=0 q=0 j=0 i=0 Jj=q
2r+2s-2 r+s—1 2r+2s-2 r+s—1
S5 IS W] | K Y M Wl
i=0 k3 +hy =i, = kg =i, Jj=ks 4
0<k3 kg<r+s—1 0<kg kg<r+s—1

We get the necessary condition (2): If r + s — 1 < i < 2r + 25 — 2, the coefficients of C(n)D(n) and
E(n)F(n) are equal, which is equivalent to the system of equations as follows:

r+s—1 . r+s—1 .
Z (kzs_r)trﬂ—kz Z bj(kjl) = Z by, Z bj(k]4)’ (3.9)

ky+ky=i, Jj=k1+1 k3 +kg=i, Jj=k4
0<ky <r+s—2,r<kp<r+s 0<k3 kg <r+s-1
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where i =2r+2s—-2, 2r+2s-3, ---, r+sandr+s—1.
We rewrite the system of (3.9) as

(r+s—1Db, 1 = b2

r+s—1°

[(}" +5— 2) - 2br+s—1 ] br+s—2 = fl(br+s—1)’

+5=3)=2bris 1 1brys3 = Dris—1,br45-2),
[((r+s ) +5-11Dr15-3 = fo(bris-1,bris-2) (3.10)

_2br+s—lb0 = fs+r(br+s—17 br+s—2’ B ) bl)
Clearly the first equation of (3.10) has two solutions, b,,,_; = 0 and b,,,_; = r + s — 1, and combined
with (3.8) [ = r + s — 1, we have
byys 1 =r+s—1. (3.11)

Substitute (3.11) into the second equation of (3.10). We have the coefficient in the left side [(r +
§—2)—2b,,s-1 ] as not equal to zero, and the right side f;(b,.,-1) as a constant, then the second equation
of (3.10) has unique solution.

Repeat the above process for every equation of (3.10). The coefficient in the left side is never equal
to zero, and the right side is always a constant, which implies the system of equations has a unique
solution, denoted it by ( bas_1, brs—2, brs—3, -+ , by, by ) with

brys1 =r+s—1,

(r+s—1)>
byysoo = ——[(2st— (r + )],
+5-2 Ty [(2st = (r + s)]
(r+s-1y 2 2 2 32 2
brys 3 = 6 —r+2rsc=2rs+s — 5" —25)t
+5-3 l2(r+s)2(r+s+l)[ s(res —r rs rs+ s —s s)
—6s(r + 35— +3rs> = 2rs=2r+s5° — s> — 28)t
+ Q2 + 8P s — P + 121757 = 3r%s = 3% + 8rs® — 3rs® — 6rs + 25* — 5° — 357,
r+s—1 .
N tr+s—k2 b’ r+s—1 .
lierz:i (kz_r) j:kzl:u J(k‘) )y b, X bj(kﬁ)
i—r—s+1<k) <r+s-2 k3+k4:i j:k4
b. _ r<ky <r+s _ i—r—s+2<ks,ks<r+s—1
s 3r+3s—i-3 3r+3s—i-3
r+s—1 . .
Z bj [(i—;{—x) - (I" ts5= 1)(i—r—Jx+l)]
J=i—r—s+2
3r+3s—i-3 ’
+s—k rrsc b J +s5—1 +s5—1
s sk . r+s— . r+s—
Wi (") e 1) S by X b({)+G+s—1) ¥ b
0<ky <r+s-2 k3+ky=i J=ka j=1
b _ r<ky<r+s _ 1Sk3,k4SV+S—1
0~ 20r+ s — 1) 2r+s—1) ’
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where we define ( _’1) =0 for all j € N*,
It is clear that the coefficient b; is determined by r, s and ¢, and the solution is corresponded to a
polynomial with (r+s-1)-order denoted by B(n, r, s,t). We can easily prove B(n,r, s, t) satisfies (3.6),

and then we have 1
(o) 1 -

T . ~ B 1, 8, 1).

(kz: n(n+ t)"') (n,7,5,1)

=n

4. Conclusions

In this paper we discussed the reciprocal sums of the generalized Riemann zeta function within the
range of integers, and we also considered other functions within the range of integers.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgments

The authors express their gratitude to the referee for very helpful and detailed comments. Supported
by the National Natural Science Foundation of China (Grant No. 11701448).

Conflict of interest

The authors declare no conflict of interest.

References

1. G. Choi, Y. Choo, On the reciprocal sums of products of Fibonacci and Lucas number, Filomat,
32 (2018), 2911-2920. http://dx.doi.org/10.2298/FIL1808911C

2. W. Hwang, K. Song, A reciprocal sum related to the Riemann zeta function at s = 6, arXiv:
1709.07994.

3. D. Kim, K. Song, The inverses of tails of the Riemann zeta function, J. Inequal. Appl., 2018
(2018), 157. http://dx.doi.org/10.1186/s13660-018-1743-6

4. D. Kim, H. Kim, T. Kim, Some identities on generalized harmonic numbers and generalized
harmonic functions, Demonstr. Math., 56 (2023), 20220229. http://dx.doi.org/10.1515/dema-2022-
0229

5. T. Kim, D. Kim, H. Lee, J. Kwon, On some summation formulas, Demonstr. Math., 55 (2022),
1-7. http://dx.doi.org/10.1515/dema-2022-0003

6. T. Kim, Euler numbers and polynomials associated with Zeta function, Abstr. Appl. Anal., 2008
(2008), 581582. http://dx.doi.org/10.1155/2008/581582

AIMS Mathematics Volume 8, Issue 12, 28558-28568.


http://dx.doi.org/http://dx.doi.org/10.2298/FIL1808911C 
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-018-1743-6
http://dx.doi.org/http://dx.doi.org/10.1515/dema-2022-0229
http://dx.doi.org/http://dx.doi.org/10.1515/dema-2022-0229
http://dx.doi.org/http://dx.doi.org/10.1515/dema-2022-0003 
http://dx.doi.org/http://dx.doi.org/10.1155/2008/581582

28568

7. T. Kim, Degenerate Euler zeta function, Russ. J. Math. Phys., 22 (2015), 469-472.
http://dx.doi.org/10.1134/S1061920815040068

8. T. Komatsu, On the nearest integer of the sum of reciprocal Fibonacci numbers, Aportaciones
Matematicas Investigacion, 20 (2011), 171-184.

9. H. Lee, J. Park, Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers, J.
Inequal. Appl., 2020 (2020), 91. http://dx.doi.org/10.1186/s13660-020-02359-z

10. H. Lee, J. Park, Asymptotic behavior of the inverse of tails of Hurwitz zeta function, J. Korean
Math. Soc., 57 (2020), 1535-1549. http://dx.doi.org/10.4134/JKMS.j190789

11. H. Lee, J. Park, The limit of reciprocal sum of some subsequential Fibonacci number, AIMS
Mathematics, 11 (2021), 12379-12394. http://dx.doi.org/10.3934/math.2021716

12. X. Lin, Some identities related to Riemann zeta-function, J. Inequal. Appl., 2016 (2016), 32.
http://dx.doi.org/10.1186/s13660-016-0980-9

13. D. Marques, P. Trojovsky, The proof of a formula concerning the asymptotic behavior of the
reciprocal sum of the square of multiple-angle Fibonacci numbers, J. Inequal. Appl., 2022 (2022),
21. http://dx.doi.org/10.1186/s13660-022-02755-7

14. H. Xu, Some computational formulas related the Riemann zeta-function tails, J. Inequal. Appl.,
2016 (2016), 132. http://dx.doi.org/10.1186/s13660-016-1068-2

15. Z. Xu, T. Wang, The infinite sum of the cubes of reciprocal Pell numbers, Adv. Differ. Equ., 2013
(2013), 184. http://dx.doi.org/10.1186/1687-1847-2013-184

B ©2023 the Author(s), licensee AIMS Press. This
AR is an open access article distributed under the
@ AIMS Press terms of the Creative Commons Attribution License
o (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 12, 28558-28568.


http://dx.doi.org/http://dx.doi.org/10.1134/S1061920815040068
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-020-02359-z
http://dx.doi.org/http://dx.doi.org/10.4134/JKMS.j190789
http://dx.doi.org/http://dx.doi.org/10.3934/math.2021716
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-016-0980-9
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-022-02755-7
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-016-1068-2
http://dx.doi.org/http://dx.doi.org/10.1186/1687-1847-2013-184
http://creativecommons.org/licenses/by/4.0

	Introduction
	Main results
	Proof of theorem
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Conclusions

