Research article

The characteristic polynomials of semigeneric threshold arrangements

  • Received: 29 July 2023 Revised: 08 October 2023 Accepted: 12 October 2023 Published: 20 October 2023
  • MSC : 52C35, 32S22

  • The semigeneric threshold arrangement is the hyperplane arrangement defined by $ x_i+x_j = a_{i} $, where $ 1 \leq i < j \leq n $ and $ a_i\text{'s} $ are generic elements. In this paper, we obtain a necessary and sufficient condition for subarrangements of the semigeneric threshold arrangement to be central from the perspective of simple graphs. Combining it with Whitney's theorem, we provide a formula for the characteristic polynomials of the semigeneric threshold arrangement and its subarrangements.

    Citation: Ruimei Gao, Yuyu Wang. The characteristic polynomials of semigeneric threshold arrangements[J]. AIMS Mathematics, 2023, 8(12): 28569-28581. doi: 10.3934/math.20231462

    Related Papers:

  • The semigeneric threshold arrangement is the hyperplane arrangement defined by $ x_i+x_j = a_{i} $, where $ 1 \leq i < j \leq n $ and $ a_i\text{'s} $ are generic elements. In this paper, we obtain a necessary and sufficient condition for subarrangements of the semigeneric threshold arrangement to be central from the perspective of simple graphs. Combining it with Whitney's theorem, we provide a formula for the characteristic polynomials of the semigeneric threshold arrangement and its subarrangements.



    加载中


    [1] T. Abe, D. Suyama, A basis construction of the extended Catalan and Shi arrangements of the type $\mathcal{A}_2$, J. Algebra, 493 (2018), 20–35. https://doi.org/10.1016/j.jalgebra.2017.09.024 doi: 10.1016/j.jalgebra.2017.09.024
    [2] M. Aguiar, S. Mahajan, Topics in Hyperplane Arrangements, Providence: Mathematical Surveys and Monographs, 2017.
    [3] P. Aluffi, Grothendieck classes and Chern classes of hyperplane arrangements, Int. Math. Res. Not., 8 (2013), 1873–1900. https://doi.org/10.1093/imrn/rns100 doi: 10.1093/imrn/rns100
    [4] F. Ardila, Algebraic and geometric methods in enumerative combinatorics, Handbook Enumerative Comb., 2015,589–678.
    [5] A. Bapat, Recollement for perverse sheaves on real hyperplane arrangements, J. Algebra, 568 (2021), 61–90. https://doi.org/10.1016/j.jalgebra.2020.09.044 doi: 10.1016/j.jalgebra.2020.09.044
    [6] O. Bernardi, Deformations of the braid arrangement and trees, Adv. Math., 335 (2018), 466–518. https://doi.org/10.1016/j.aim.2018.07.020 doi: 10.1016/j.aim.2018.07.020
    [7] H. Crapo, G. C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, Cambridge: MIT Press, 1970. https://doi.org/10.1112/blms/4.2.220b
    [8] R. Duarte, A. G. de Oliveira, Pak-Stanley labeling of the $m$-Catalan hyperplane arrangement, Adv. Math., 387 (2021), 107827. https://doi.org/10.1016/j.aim.2021.107827 doi: 10.1016/j.aim.2021.107827
    [9] R. M. Gao, D. H. Pei, H. Terao, The Shi arrangement of the type $D_\ell$, Proc. Japan Acad. Ser. A Math. Sci., 88 (2012), 41–45. http://doi.org/10.3792/pjaa.88.41
    [10] R. M. Gao, J. J. Qiang, M. Zhang, The Characteristic polynomials of semigeneric graphical arrangements, AIMS Math., 8 (2023), 3226–3235. https://doi.org/10.3934/math.2023166 doi: 10.3934/math.2023166
    [11] I. M. Gessel, S. T. Griffin, V. Tewari, Labeled binary trees, subarrangements of the Catalan arrangements, and Schur positivity, Adv. Math., 356 (2019), 106814. https://doi.org/10.1016/j.aim.2019.106814 doi: 10.1016/j.aim.2019.106814
    [12] H. Kamiya, A. Takemura, H. Terao, Periodicity of hyperplane arrangements with integral coefficients modulo positive integers, J. Algebraic Combin., 27 (2008), 317–330. https://doi.org/10.1007/s10801-007-0091-2 doi: 10.1007/s10801-007-0091-2
    [13] L. Moci, A Tutte polynomial for toric arrangements, Trans. Amer. Math. Soc., 364 (2012), 1067–1088.
    [14] P. Orlik, L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math., 56 (1980), 167–189. https://doi.org/10.1007/BF01392549 doi: 10.1007/BF01392549
    [15] P. Orlik, H. Terao, Arrangements of hyperplanes, Berlin: Springer-Verlag, 1992. http://doi.org/10.1007/978-3-662-02772-1
    [16] R. P. Stanley, An introduction to hyperplane arrangements, Geom. Combin., 13 (2007), 389–496.
    [17] D. Suyama, H. Terao, The Shi arrangements and the Bernoulli polynomials, Bull. London Math. Soc., 44 (2012), 563–570. https://doi.org/10.1112/blms/bdr118
    [18] H. Terao, M. Yoshinaga, Recent topics of arrangements of hyperplanes, Sugaku Expositions, 31 (2018), 43–67. https://doi.org/10.1090/suga/428 doi: 10.1090/suga/428
    [19] M. Yoshinaga, Worpitzky partitions for root systems and characteristic quasi-polynomials, Tohoku Math. J., 70 (2018), 39–63. https://doi.org/10.2748/tmj/1520564418 doi: 10.2748/tmj/1520564418
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(456) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog