The semigeneric threshold arrangement is the hyperplane arrangement defined by $ x_i+x_j = a_{i} $, where $ 1 \leq i < j \leq n $ and $ a_i\text{'s} $ are generic elements. In this paper, we obtain a necessary and sufficient condition for subarrangements of the semigeneric threshold arrangement to be central from the perspective of simple graphs. Combining it with Whitney's theorem, we provide a formula for the characteristic polynomials of the semigeneric threshold arrangement and its subarrangements.
Citation: Ruimei Gao, Yuyu Wang. The characteristic polynomials of semigeneric threshold arrangements[J]. AIMS Mathematics, 2023, 8(12): 28569-28581. doi: 10.3934/math.20231462
The semigeneric threshold arrangement is the hyperplane arrangement defined by $ x_i+x_j = a_{i} $, where $ 1 \leq i < j \leq n $ and $ a_i\text{'s} $ are generic elements. In this paper, we obtain a necessary and sufficient condition for subarrangements of the semigeneric threshold arrangement to be central from the perspective of simple graphs. Combining it with Whitney's theorem, we provide a formula for the characteristic polynomials of the semigeneric threshold arrangement and its subarrangements.
[1] | T. Abe, D. Suyama, A basis construction of the extended Catalan and Shi arrangements of the type $\mathcal{A}_2$, J. Algebra, 493 (2018), 20–35. https://doi.org/10.1016/j.jalgebra.2017.09.024 doi: 10.1016/j.jalgebra.2017.09.024 |
[2] | M. Aguiar, S. Mahajan, Topics in Hyperplane Arrangements, Providence: Mathematical Surveys and Monographs, 2017. |
[3] | P. Aluffi, Grothendieck classes and Chern classes of hyperplane arrangements, Int. Math. Res. Not., 8 (2013), 1873–1900. https://doi.org/10.1093/imrn/rns100 doi: 10.1093/imrn/rns100 |
[4] | F. Ardila, Algebraic and geometric methods in enumerative combinatorics, Handbook Enumerative Comb., 2015,589–678. |
[5] | A. Bapat, Recollement for perverse sheaves on real hyperplane arrangements, J. Algebra, 568 (2021), 61–90. https://doi.org/10.1016/j.jalgebra.2020.09.044 doi: 10.1016/j.jalgebra.2020.09.044 |
[6] | O. Bernardi, Deformations of the braid arrangement and trees, Adv. Math., 335 (2018), 466–518. https://doi.org/10.1016/j.aim.2018.07.020 doi: 10.1016/j.aim.2018.07.020 |
[7] | H. Crapo, G. C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, Cambridge: MIT Press, 1970. https://doi.org/10.1112/blms/4.2.220b |
[8] | R. Duarte, A. G. de Oliveira, Pak-Stanley labeling of the $m$-Catalan hyperplane arrangement, Adv. Math., 387 (2021), 107827. https://doi.org/10.1016/j.aim.2021.107827 doi: 10.1016/j.aim.2021.107827 |
[9] | R. M. Gao, D. H. Pei, H. Terao, The Shi arrangement of the type $D_\ell$, Proc. Japan Acad. Ser. A Math. Sci., 88 (2012), 41–45. http://doi.org/10.3792/pjaa.88.41 |
[10] | R. M. Gao, J. J. Qiang, M. Zhang, The Characteristic polynomials of semigeneric graphical arrangements, AIMS Math., 8 (2023), 3226–3235. https://doi.org/10.3934/math.2023166 doi: 10.3934/math.2023166 |
[11] | I. M. Gessel, S. T. Griffin, V. Tewari, Labeled binary trees, subarrangements of the Catalan arrangements, and Schur positivity, Adv. Math., 356 (2019), 106814. https://doi.org/10.1016/j.aim.2019.106814 doi: 10.1016/j.aim.2019.106814 |
[12] | H. Kamiya, A. Takemura, H. Terao, Periodicity of hyperplane arrangements with integral coefficients modulo positive integers, J. Algebraic Combin., 27 (2008), 317–330. https://doi.org/10.1007/s10801-007-0091-2 doi: 10.1007/s10801-007-0091-2 |
[13] | L. Moci, A Tutte polynomial for toric arrangements, Trans. Amer. Math. Soc., 364 (2012), 1067–1088. |
[14] | P. Orlik, L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math., 56 (1980), 167–189. https://doi.org/10.1007/BF01392549 doi: 10.1007/BF01392549 |
[15] | P. Orlik, H. Terao, Arrangements of hyperplanes, Berlin: Springer-Verlag, 1992. http://doi.org/10.1007/978-3-662-02772-1 |
[16] | R. P. Stanley, An introduction to hyperplane arrangements, Geom. Combin., 13 (2007), 389–496. |
[17] | D. Suyama, H. Terao, The Shi arrangements and the Bernoulli polynomials, Bull. London Math. Soc., 44 (2012), 563–570. https://doi.org/10.1112/blms/bdr118 |
[18] | H. Terao, M. Yoshinaga, Recent topics of arrangements of hyperplanes, Sugaku Expositions, 31 (2018), 43–67. https://doi.org/10.1090/suga/428 doi: 10.1090/suga/428 |
[19] | M. Yoshinaga, Worpitzky partitions for root systems and characteristic quasi-polynomials, Tohoku Math. J., 70 (2018), 39–63. https://doi.org/10.2748/tmj/1520564418 doi: 10.2748/tmj/1520564418 |