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ai , where 1 ≤ i < j ≤ n and ai’s are generic elements. In this paper, we obtain a necessary and
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1. Introduction

A finite hyperplane arrangement A is a finite set of affine hyperplanes in some vector space V �
Kn, where K is a field, the classical theories of hyperplane arrangements are introduced in [15, 16].
Literatures [2, 18] list the important topics of hyperplane arrangement, many arrangements mentioned
in them are the deformations of the braid arrangement

Bn := {xi − x j = 0 | 1 ≤ i < j ≤ n}.

The key observation is that for this arrangement, geometric notions of faces, flats, top-cones, and so
on can be encoded by combinatorial notions of set compositions, set partitions, partial orders, and so
on. There are a lot of deformations of the braid arrangement [6], such as: Shi arrangement [9, 17],
Catalan arrangement [1,8,11], and semigeneric braid arrangement [10]. Their combinatorics were first
investigated systematically by Stanley [16] and relete to objects studied classically in enumeration. A
major role in this study is played by the characteristic polynomial, which is a combinatorial invariant
of the hyperplane arrangement.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231462


28570

Indeed, the characteristic polynomial is related to several other invariants, such as the Poincaré
polynomial of the complexified complementM(A) [14], the number of chambers for real
arrangements [4, 5], the number of Fq-rational points [7], Chern classes of certain vector bundles [3],
lattice points counting [12, 19], and Tutte polynomial [13], etc.

In order to introduce the characteristic polynomial, we need to comprehend what an intersection
lattice is. Let L(A) be the collection of all intersections of elements of A. We partially order L(A)
by the reverse of inclusion, so that X ⩽ Y means X ⊇ Y . Then L(A) is a geometric lattice, called the
intersection lattice of A, which has V as its minimal element. Let µ be the Möbius function of L(A).
The characteristic polynomial χA(t) ofA is defined by

χA(t) =
∑

X∈L(A)

µ(V, X)tdim X.

In [16], Stanley defined the generic arrangement as follows:
Let L1, · · · , Lm be linear forms, not necessarily distinct, in the variables x = (x1, . . . , xn) over the

field K. LetA be defined by
L1(x) = a1, · · · , Lm(x) = am,

where a1, · · · , am are generic elements of K. This means if Hi = ker (Li(x) − ai), then

Hi1 ∩ · · · ∩ Hik , ∅ ⇐⇒ Li1 , · · · , Lik are linearly independent.

He also presented a special case of generic arrangement, called the generic threshold arrangement:

{xi + x j = ai j | 1 ≤ i < j ≤ n},

where ai j’s are generic elements. In this paper, we define the semigeneric threshold arrangement in Rn:

An := {xi + x j = ai | 1 ≤ i < j ≤ n},

where ai’s are generic elements. We can see that An is a natural deformation of the generic threshold
arrangement while we replace ai j with ai. The generic threshold arrangement and semigeneric
threshold arrangement don’t have an inclusion relationship, but may intersect.

If we consider the hyperplanes with different ai’s, then the graph corresponding to them is always a
forest. The normals of those hyperplanes are always linearly independent, furthermore, the intersection
of those hyperplanes is not empty. Therefore, the genericity of ai’s can be guaranteed when they take
any numbers in R. We do not emphasize that ai’s are generic elements in later sections.

Since the characteristic polynomial of An has not yet been determined, in this paper, we provide a
formula for the characteristic polynomials of the semigeneric threshold arrangement and its
subarrangements. The remainder of this paper is organized as follows: In Section 2, we provide a few
definitions to support the results that follow. In Section 3, we obtain a necessary and sufficient
condition for the subarrangements of An to be central from the perspective of simple graphs and
provide a formula for their characteristic polynomials. In Section 4, we demonstrate two uses for this
formula.
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2. Preliminaries

We aims to provide a formula for the characteristic polynomials of the subarrangements of An.
According to Whitney’s theorem, it is needed to give a characterization of the central subarrangements
ofAn. In this process, two types of special graphs, pseudo even cycle and pseudo spanning forest, play
an important role. Following are the definitions for the terms STG arrangement, pseudo even cycle,
and pseudo spanning forest.

Definition 2.1. Let G = (V(G), E(G)) be a simple graph with V(G) = [n] = {1, · · · , n}. The
corresponding STG arrangement, short for semigeneric threshold graphical arrangement, is defined by

AG = {xi + x j = ai | i j ∈ E(G), 1 ≤ i < j ≤ n},

where ai’s are generic elements.

Notice thatAG is a subarrangement ofAn. Particularly, if G = Kn, the complete graph on [n], then
AG = An.

Following is the definition of the pseudo even cycle, which can be regarded as the generalization of
the even cycle.

Definition 2.2. Let G1 and G2 be a p-cycle and a q-cycle, G3 be a path of length t whose ends are k0

and kt, where p, q ∈ {2r + 1 | r ∈ Z+}, t ≥ 0. Particularly when t = 0, G3 is a vertex. If G1,G2,G3

satisfy the following conditions:

(1) V(G1 ∩G2) =

{k0}, t = 0,
∅, t > 0,

(2) V(G1 ∩G3) = {k0}, (3) V(G2 ∩G3) = {kt},

then we call G1 ∪G2 ∪G3 a pseudo even cycle, denoted as Ht
p,q.

Figure 1 demonstrates that the length of a closed walk around Ht
p,q is p + q + 2t, an even number.

That’s why we call it a pseudo even cycle.

Figure 1. The pseudo even cycle Ht
p,q.

For the convenience of proofs in Section 3, we unify the concepts of even cycle and pseudo even
cycle, providing the following definition.

Definition 2.3. We call a graph an extended even cycle if it’s an even cycle or a pseudo even cycle.

The rank of AG is the dimension of the space spanned by the normals to the hyperplanes in AG,
denoted as rank(AG), which can be easily computed by the following pseudo spanning tree.
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Definition 2.4. Let G be a connected simple graph, D be a spanning tree of G. We denote

G̃ =
{

D, G contains no odd cycle,
D ∪ e, G contains any odd cycle,

where e ∈ E(G) and D ∪ e contains an odd cycle, and call G̃ the pseudo spanning tree of G.

Notice that the pseudo spanning tree of G must exist but is not necessarily unique, as it depends on
the selection of both D and e.

If G is not connected, we assume the connected components of G are C1, · · · ,Cp, where p ≥ 2.
Denote G̃ = C̃1 ∪ · · · ∪ C̃p, and call it the pseudo spanning forest of G.

For a more intuitive understanding of Definition 2.4, we provide Example 2.1.

Example 2.1. Let G be the simple graph in (a), then D in (b) represents a spanning tree of G, and G̃ in
(c) represents a pseudo spanning tree of G.

(a) The simple graph G (b) The spanning tree D (c) The pseudo spanning tree G̃

Figure 2. The simple graph G and its spanning tree D, pseudo spanning tree G̃.

3. Main results

This section first provides a sufficient condition for AG to be central if G is a forest. Second,
according to the extended even cycles in G, we present a necessary and sufficient condition for AG to
be central. Finally, we obtain a formula for the characteristic polynomials of the STG arrangements.

Lemma 3.1. If the simple graph G is a forest, thenAG is central.

Proof. AG is central if the intersection of all the hyperplanes in AG contains at least one point
(x1, · · · , xn). We can find such an assignment (x1, · · · , xn) satisfying xi + x j = ai (i j ∈ E(G)). That can
be done by just picking one from {x1, · · · , xn} at a time since the graph G is a forest and a1, · · · , an−1

are generic elements. □

The following lemma characterizes centralAG if G is a cycle.

Lemma 3.2. Let G be a k-cycle with V(G) = {i1, · · · , ik} and E(G) =
{
i ji j+1 | 1 ≤ j ≤ k

}
, where ik+1 = i1.

The corresponding STG arrangement of G is

AG =
{
xi j + xi j+1 = amin{i j,i j+1} | 1 ≤ j ≤ k

}
.

Then we have
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(1) If k is odd,AG is central.

(2) If k is even,AG is central if and only if
k∑

j=1
(−1) jamin{i j,i j+1} = 0.

Proof. The system of equations formed by the hyperplane equations inAG is
xi1 + xi2 = b1,

...

xik−1 + xik = bk−1,

xik + xi1 = bk,

where b j = amin{i j,i j+1}, 1 ≤ j ≤ k.
Let β = (b1, · · · , bk)T, A and A be the coefficient matrix and augmented matrix of the above system

of equations, respectively. Adjusting the order of columns in the matrix A, we may assume

A = (A, β) =


1 1 b1
. . .
. . .

...

1 1 bk−1

1 1 bk


k×(k+1)

.

Making the following transformations to A, we have

P
(
k, (k − 1)

(
(−1)2k−1

))
· · · P

(
k, i
(
(−1)i+k

))
· · · P

(
k, 1
(
(−1)1+k

))
A

=



1 1 b1

1 . . .
...

. . . 1 bi−1

1 . . . bi
. . . 1

...

1 1 bk−1

1 + (−1)1+k 0 · · · 0 · · · 0 0 (−1)k
k∑

j=1
(−1) jb j


k×(k+1)

,

where P(i, j(m)) denotes the elementary matrix by adding m multiple of j-th row of the identity matrix
to i-th row of the identity matrix.

Distinctly, if k is odd, r(A) = r(A) = k, i.e., AG is central. If k is even, AG is central if and only

if (−1)k
k∑

j=1
(−1) jb j = 0, i.e.,

k∑
j=1

(−1) jamin{i j,i j+1} = 0. □

The following lemma provides a necessary and sufficient condition for AHt
p,q to be central, where

Ht
p,q is a pseudo even cycle.

Lemma 3.3. For the pseudo even cycle Ht
p,q, we start from the edge ipi1, go along the direction of the

arrows in Figure 1, end at the edge jq−1 jq, sequentially replace the generic elements of the hyperplanes
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corresponding to the edges by b1, · · · , bp+t+q. ThenAHt
p,q is central if and only if

p+q∑
j=1

(−1) jb j = 0, t = 0,
p+t+q∑

j=1
(−1) jb j +

p+t∑
j=p+1

(−1) jb j = 0, t > 0.

Proof. If t > 0, let β = (b1, · · · , bp+t+q)T, A and A be the coefficient matrix and augmented matrix of
the system of equations inAHt

p,q , respectively. Adjusting the order of columns in the matrix A, we may
assume that

A = (A, β) =



1 1 b1
. . .
. . .

...

1 1 bp−1

1 1 bp

1 1 bp+1

1 1 bp+2
. . .
. . .

...

1 1 bp+t

1 1 bp+t+1
. . .
. . .

...

1 1 bp+t+q−1

1 1 bp+t+q


(p+t+q)×(p+t+q)

.

Making the following transformations to A, we have

P
(
1, (p + t)

(
(−1)p+t−1

))
· · · P (1, (p + 1) ((−1)p)) P

(
1, (p + t + q)

(
(−1)p+t+q−1

))
· · · P

(
1, 2
(
(−1)1

))
A

=



0 0
p+t+q∑

j=1
(−1) j−1b j +

p+t∑
j=p+1

(−1) j−1b j

. . .
. . .

...

1 1 bp−1

1 1 bp

1 1 bp+1

1 1 bp+2
. . .
. . .

...

1 1 bp+t

1 1 bp+t+1
. . .
. . .

...

1 1 bp+t+q−1

1 1 bp+t+q


(p+t+q)×(p+t+q)

.

Therefore,AHt
p,q is central if and only if r(A) = r(A), i.e.,

p+t+q∑
j=1

(−1) j−1b j +
p+t∑

j=p+1
(−1) j−1b j = 0.
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Similarly, if t = 0,AHt
p,q is central if and only if

p+q∑
j=1

(−1) jb j = 0. □

Following is a formula for computing rank(AG) according to the pseudo spanning forest of G.

Lemma 3.4. Let G be a simple graph, G̃ be a pseudo spanning forest of G andAG be the corresponding
STG arrangement of G. Then rank(AG) = |E(G̃)|, where |E(G̃)| is the number of edges in G̃.

Proof. We assume that |E(G̃)| = m, |E(G)| = h, 1 ≤ m ≤ h. In the following, the normals to the
hyperplanes inAG will be simply called the normals of G. Let the normals of G̃ be δ1, · · · , δm and the
normals of G be δ1, · · · , δm, · · · , δh, respectively. We assume G has connected components C1, · · · ,Cp,
p ≥ 2. The maximal linearly independent subset of {δ1, · · · , δh} is the disjoint union of the maximal
linearly independent subsets of normals of C1, · · · ,Cp, and |E(G̃)| = |E(C̃1)| + · · · + |E(C̃p)|, then we
may assume G is connected.

Case 1: If G contains no odd cycle, then G̃ is the spanning tree of G, i.e., δ1, · · · , δm are linearly
independent. If E(G) = E(G̃), i.e., m = h, then {δ1, · · · , δm} is a maximal linearly independent subset
of {δ1, · · · , δh}. If E(G) , E(G̃), for any e ∈ E(G) − E(G̃), G̃

⋃
e must contain an even cycle. Let the

normal corresponding to edge e be δ ∈ {δm+1, · · · , δh}. Since the normals of an even cycle are linearly
dependent, δ can be linearly expressed by δ1, · · · , δm. However, e is taken at random, then {δ1, · · · , δm}

is a maximal linearly independent subset of {δ1, · · · , δh}.
Case 2: If G contains any odd cycle, then G̃ has a unique odd cycle O. We assume |E(O)| = k,

and the normals of O are {δ1, · · · , δk} ⊆ {δ1, · · · , δh}, take any edge e ∈ E(O) and let its corresponding
normal happens to be δk. Since O is an odd cycle, δk cannot be linearly expressed by the normals of
O \ e, that is, δ1, · · · , δk−1. It is obvious that δk cannot be linearly expressed by the normals of G̃ \ O,
that is, δk+1, · · · , δm. In addition, δ1, · · · , δk−1 and δk+1, · · · , δm cannot linearly express each other, then

L(δ1, · · · , δk−1) ∩ L(δk+1, · · · , δm) = {0}.

Therefore, δk cannot be linearly expressed by δ1, · · · , δk−1, δk+1, · · · , δm, which are the normals of G̃ \
e. Since G̃ \ e is the spanning tree of G, the normals of G̃ \ e are linearly independent, therefore,
δ1, · · · , δm are linearly independent. If E(G) = E(G̃), i.e., h = m, then {δ1, · · · , δm} is a maximal
linearly independent subset of {δ1, · · · , δh}. If E(G) , E(G̃), i.e., |E(G̃)| = m = |V(G)|, then δ1, · · · , δm

are in the m-dimensional space. However, m+1 vectors in m-dimensional space are linearly dependent.
Therefore, {δ1, · · · , δm} is a maximal linearly independent subset of {δ1, · · · , δh}.

Above all, {δ1, · · · , δm} is a maximal linearly independent subset of {δ1, · · · , δh}, i.e., rank(AG) =
|E(G̃)|. □

In the following, we provide a necessary and sufficient condition for the STG arrangement AG to
be central.

Theorem 3.1. The STG arrangement AG is central if and only if all the subarrangements
corresponding to the extended even cycles present in G are central.

Proof. IfAG is central, then any subarrangement ofAG is central.
Conversely, we consider the following two cases:
Case 1: Let C be a connected component of G that does not contain any extended even cycles, i.e.,

C contains no cycles or only an odd one, then C̃ = C. Let M and M be the coefficient matrix and
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augmented matrix of the linear system of hyperplane equations for AC, respectively. Then, the row
vectors of M are the normals of C = C̃, which are linearly independent. Therefore, rank(M) = |E(C̃)|.
Because |E(C̃)| ≤ |V(C̃)|, i.e., the number of rows of M does not exceed the number of columns of M.
Then rank(M) = |E(C̃)| = rank(M), i.e.,AC is central.

Case 2: Let C be a connected component of G that contains extended even cycle. Assume the
number of vertices in C is |V(C)| = l, the number of edges in C is |E(C)| = p (l ≤ p ≤ C2

l ), the
number of edges in C̃ is |E(C̃)| = r ≤ p. Let the normals of C̃ be δ1, · · · , δr and the normals of
C be δ1, · · · , δr, · · · , δp. By Lemma 3.4, we know that the maximal linearly independent subset of
{δ1, · · · , δp} is {δ1, · · · , δr}. Let M and M be the coefficient matrix and augmented matrix of the linear
system of hyperplane equations forAC as follows:

M =


δ1
...

δp


p×l

, M =


δ1 a1
...
...

δp ap


p×(l+1)

.

We can see that rank(M) = rank(δ1, · · · , δp) = rank(δ1, · · · , δr) = r.
In the following, we discuss the rank of M. Pick e ∈ E(C) \ E(C̃), and assume its normal is

δs ∈ {δr+1, · · · , δp}, then

N =


δ1 a1
...
...

δr ar

δs as


is the augmented matrix of the linear system of hyperplane equations forAC̃∪e. From the definition of
C̃, we know C̃ ∪ e must contain a unique extended even cycle O. We may assume δ1, · · · , δh, δs are the
normals of O, where h ≤ r. Then, the augmented matrix of the linear system of hyperplane equations
forAO is

T =


δ1 a1
...
...

δh ah

δs as

 .
If O is an even cycle, according to the proof of Lemma 3.2, AO is central if and only if

rank(T ) = rank(δ1, · · · , δh, δs) = h. Therefore, r(N) = r. However, δs can be taken as any element in
{δr+1, · · · , δp}, then r(M) = r. There is a similar result in Lemma 3.3, so the same goes if O is a
pseudo even cycle.

Then rank(M) = r = rank(M), i.e.,AC is central.
Above all,AG is central. □

Next, we cite Whitney’s theorem [16] as Lemma 3.5.

Lemma 3.5. Let A be an arrangement in n-dimensional vector space, the characteristic polynomial
ofA is

χA(t) =
∑
B⊆A

B is central

(−1)#Btn−rank(B),

where #B is the number of hyperplanes in B.
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By Lemma 3.5, we can obtain a formula for the characteristic polynomial of the STG arrangement
as follows.

Corollary 3.1. The characteristic polynomial of the STG arrangementAG is:

χAG (t) =
∑
B⊆G

AB is central

(−1)|E(B)|tu(B)−v(B),

where B is the subgraph of G such thatAB is a central arrangement, u(B) is the number of connected
components in B, and v(B) is the number of odd cycles in B̃.

Proof. The number of edges in B̃ is rank(AB). The number of connected components in B is u(B) =
n − rank(AB) + v(B). Then

#AB = |E(B)|, n − rank(AB) =
(
n − rank(AB) + v(B)

)
− v(B) = u(B) − v(B).

Therefore, the characteristic polynomial ofAG is

χAG (t) =
∑
AB⊆AG

AB is central

(−1)#ABtn−rank(AB) =
∑
B⊆G

AB is central

(−1)|E(B)|tu(B)−v(B).

□

4. Examples

In this section, we will illustrate the applications of Corollary 3.1 with two examples.

Example 4.1. For the graph G in Figure 3, the corresponding STG arrangement AG contains the
following hyperplanes:

x1 + x2 = a1, x1 + x3 = a1, x1 + x4 = a1, x1 + x5 = a1, x2 + x3 = a2, x3 + x4 = a3, x4 + x5 = a4.

We let a1 = 1, a2 = 2, a3 = 2, a4 = 3, and compute the characteristic polynomial ofAG.

Figure 3. A simple graph G with 5 vertices.

According to Theorem 3.1, we must determine if the STG arrangements corresponding to the
extended even cycles in G are central. By Lemma 3.2, 3.3, the STG arrangement corresponding to the
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left even cycle in Figure 4 is central, whereas the other two are not. Therefore, for central STG
arrangement AB, the corresponding graph B should not contain any extended even cycles other than
the left one.

Figure 4. Extended even cycles in G.

Figure 5 lists the isomorphic subgraphs of G which corresponding to central arrangements, and we
label the numbers of each case under the subgraphs.

(a) 1 (b) 7 (c) 14 (d) 7 (e) 23 (f) 9

(g) 1 (h) 1 (i) 1 (j) 21 (k) 4 (l) 4

(m) 4 (n) 1 (o) 5 (p) 4 (q) 5 (r) 1

(s) 2 (t) 1 (u) 1 (v) 2

Figure 5. Subgraphs of G corresponding to central arrangements.

AIMS Mathematics Volume 8, Issue 12, 28569–28581.
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Table 1 lists the values of u(B) − v(B), |E(B)|, and the number of distinct labelings of B for each
subgraph B in Figure 5.

Table 1. The values of u(B) − v(B), |E(B)| and the number of distinct labelings of B.

u(B) − v(B) B |E(B)|
The number of distinct

labelings of B
5 (a) 0 1
4 (b) 1 7
3 (c),(d) 2 21
2 (e),(f),(g),(h) 3 35

(n) 4 1
1 (i),(j),(k),(l),(m) 4 33

(s),(t) 5 3
0 (o),(p),(q),(r) 5 15

(u),(v) 6 3

Thus, by Corollary 3.1, the characteristic polynomial ofAG is obtained as:

χAG (t) =
∑

B

(−1)|E(B)|tu(B)−v(B)

= 1(−1)0t5 + 7(−1)1t4 + 21(−1)2t3 + 35(−1)3t2 + 1(−1)4t2

+ 33(−1)4t1 + 3(−1)5t1 + 15(−1)5t0 + 3(−1)6t0

= t5 − 7t4 + 21t3 − 34t2 + 30t − 12.

Example 4.2. For Figure 3 above, we will consider all the types of χAG (t) ifAG is taken with different
generic elements. Let the STG arrangement of G in Figure 3 be

x1 + x2 = a, x1 + x3 = a, x1 + x4 = a, x1 + x5 = a, x2 + x3 = b, x3 + x4 = c, x4 + x5 = d.

We list all the types of χAG (t) in Table 2, where “T” indicates that the condition is satisfied, “F”
indicates that the condition is not satisfied, and “\” indicates that it is unnecessary to consider.

Table 2. All types of characteristic polynomials forAG.

b − c = 0 c − d = 0 b − d = 0 χAG (t)
T T \ t5 − 7t4 + 21t3 − 33t2 + 27t− 9

F/T T/F \ t5−7t4+21t3−34t2+30t−12
F F F t5−7t4+21t3−35t2+33t−15
F F T t5−7t4+21t3−35t2+33t−14

5. Conclusions

In this paper, we study the characteristic polynomial of the semigeneric threshold arrangement
An, which is a deformation of the generic threshold arrangement. For the STG arrangement AG, we

AIMS Mathematics Volume 8, Issue 12, 28569–28581.
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provide a necessary and sufficient condition for it to be central from the perspective of the simple graph
G. Based on the above condition, a formula for the characteristic polynomial of the STG arrangement
AG is obtained.
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