Issues of the asymptotic stability for linear difference equations with time-varying coefficients are discussed. It is shown that, in contrast to equations with constant coefficients, the condition of Schur stability of the characteristic polynomial for a linear difference equation with time-varying coefficients is neither necessary nor sufficient for the asymptotic stability of the difference equation. It is proved that the analog of Kharitonov's theorem on robust stability and the edge theorem do not hold for a difference equation if the coefficients of the equation are not constant.
Citation: Vasilii Zaitsev. On the asymptotic stability of linear difference equations with time-varying coefficients[J]. AIMS Mathematics, 2023, 8(10): 23734-23746. doi: 10.3934/math.20231207
Issues of the asymptotic stability for linear difference equations with time-varying coefficients are discussed. It is shown that, in contrast to equations with constant coefficients, the condition of Schur stability of the characteristic polynomial for a linear difference equation with time-varying coefficients is neither necessary nor sufficient for the asymptotic stability of the difference equation. It is proved that the analog of Kharitonov's theorem on robust stability and the edge theorem do not hold for a difference equation if the coefficients of the equation are not constant.
[1] | M. P. Polis, A. W. Olbrot, M. Fu, An overview of recent results on the parametric approach to robust stability, In: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, USA, 1989, 23–29. https://doi.org/10.1109/cdc.1989.70067 |
[2] | M. Mansour, Robust stability of interval matrices, In: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, USA, 1989, 46–51. https://doi.org/10.1109/cdc.1989.70071 |
[3] | E. I. Jury, Robustness of a discrete system, Automat. Rem. Contr., 51 (1990), 571–592. |
[4] | B. R. Barmish, H. I. Kang, A survey of extreme point results for robustness of control systems, Automatica, 29 (1993), 13–35. https://doi.org/10.1016/0005-1098(93)90172-p doi: 10.1016/0005-1098(93)90172-p |
[5] | I. R. Petersen, R. Tempo, Robust control of uncertain systems: Classical results and recent developments, Automatica, 50 (2014), 1315–1335. https://doi.org/10.1016/j.automatica.2014.02.042 doi: 10.1016/j.automatica.2014.02.042 |
[6] | S. P. Bhattacharyya, Robust control under parametric uncertainty: An overview and recent results, Annu. Rev. Control, 44 (2017), 45–77. https://doi.org/10.1016/j.arcontrol.2017.05.001 doi: 10.1016/j.arcontrol.2017.05.001 |
[7] | B. Ross Barmish, New tools for robustness of linear systems, Macmillan Publishing Company, 1994. |
[8] | S. P. Bhattacharyya, H. Chapellat, L. H. Keel, Robust contol: The parametric approach, Prentice Hall PTR, 1995. |
[9] | S. P. Bhattacharyya, A. Datta, L. H. Keel, Linear control theory: Structure, robustness, and optimization, CRC Press, 2009. |
[10] | T. Mori, Further comments on 'A simple criterion for stability of linear discrete systems', Int. J. Control, 43 (1986), 737–739. https://doi.org/10.1080/00207178608933498 doi: 10.1080/00207178608933498 |
[11] | F. Mota, E. Kaszkurewicz, A. Bhaya, Robust stabilization of time-varying discrete interval systems, In: Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, 1992,341–346. https://doi.org/10.1109/cdc.1992.371725 |
[12] | P. H. Bauer, K. Premaratne, J. Duran, A necessary and sufficient condition for robust asymptotic stability of time-variant discrete systems, IEEE T. Automat. Contr., 38 (1993), 1427–1430. https://doi.org/10.1109/9.237661 doi: 10.1109/9.237661 |
[13] | P. H. Bauer, E. I. Jury, Bounding techniques for robust stability of time-variant discrete-time systems, Control Dyn. Syst., 72 (1995), 59–98. https://doi.org/10.1016/s0090-5267(06)80050-2 doi: 10.1016/s0090-5267(06)80050-2 |
[14] | Y. Yao, K. Liu, V. Balakrishnan, W. She, J. Zhang, Robust exponential stability analysis of uncertain discrete time-varying linear systems, Asian J. Control, 16 (2013), 1820–1828. https://doi.org/10.1002/asjc.803 doi: 10.1002/asjc.803 |
[15] | P. J. Antsaklis, A. N. Michel, Linear systems, Birkhäuser, Boston, 2006. |
[16] | K. Ogata, Discrete-time control systems, 2 Eds., Prentice Hall, Upper Saddle River, New Jersey, 1995. |
[17] | B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Theory of Lyapunov exponents, Nauka, Moscow, 1966. |
[18] | W. A. Coppel, Dichotomies in stability theory, Springer, Berlin, Heidelberg, 1978. https://doi.org/10.1007/BFb0067780 |
[19] | M. Wu, A note on stability of linear time-varying systems, IEEE T. Automat. Contr., 19 (1974), 162. https://doi.org/10.1109/TAC.1974.1100529 doi: 10.1109/TAC.1974.1100529 |
[20] | V. A. Zaitsev, I. G. Kim, On the stability of linear time-varying differential equations, P. Steklov I. Math., 319 (2022), S298–S317. https://doi.org/10.1134/s0081543822060268 doi: 10.1134/s0081543822060268 |
[21] | A. Halanay, V. Ionescu, Time-varying discrete linear systems, Birkhäuser, Basel, 1994. https://doi.org/10.1007/BFb0067780 |
[22] | V. L. Kharitonov, Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differ. Equations, 14 (1979), 1483–1485. |
[23] | N. K. Bose, E. Zeheb, Kharitonov's theorem and stability test of multidimensional digital filters, IEE P. G, 133 (1986), 187–190. https://doi.org/10.1049/ip-g-1.1986.0030 doi: 10.1049/ip-g-1.1986.0030 |
[24] | K. S. Yeung, S. S. Wang, Linear third-order discrete system stability under parameter variations, Electron. Lett., 23 (1987), 266–267. https://doi.org/10.1049/el:19870194 doi: 10.1049/el:19870194 |
[25] | F. J. Kraus, B. D. O. Anderson, E. I. Jury, M. Mansour, On the robustness of low-order Schur polynomials, IEEE T. Circ. Syst., 35 (1988), 570–577. https://doi.org/10.1109/31.1786 doi: 10.1109/31.1786 |
[26] | A. C. Bartlett, C.V. Hollot, H. Lin, Root locations of an entire polytope of polynomials: It suffices to check the edges, Math. Control Signal., 1 (1988), 61–71. https://doi.org/10.1007/bf02551236 doi: 10.1007/bf02551236 |