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1. Introduction

A big amount of works are devoted to the study of the Schur stability of a family of interval
polynomials and interval matrices. Reviews of well-known results on the Schur stability of uncertain
systems with constant coefficients can be found in articles [1–6] and monographs [7–9]. Necessary
conditions and sufficient conditions for the robust stability of linear discrete-time equations and systems
of equations with discrete time are presented in the papers [10–14].

Consider a linear homogeneous difference equation of the nth order with constant coefficients

x(t + n) + p1x(t + n − 1) + . . . + pnx(t) = 0, (1.1)

t ∈ Z, x ∈ R, p j ∈ R, j = 1, n.

Using the Eq (1.1), we construct the characteristic polynomial

χ(λ) = λn + p1λ
n−1 + . . . + pn. (1.2)
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For a linear system of difference equations with constant coefficients

z(t + 1) = Az(t), t ∈ Z, z ∈ Rn, (1.3)

the characteristic polynomial has the form χ(λ) = det(λI − A).
Recall that a polynomial

φ(λ) = s0λ
n + s1λ

n−1 + . . . + sn−1λ + sn (1.4)

is said to be Schur stable if all its roots lie in the open unit disc of the complex plane.
The well-known necessary and sufficient conditions for the Schur stability of the polynomial φ(λ)

provide, for example, the Schur-Kohn criterion [15, Ch. 6, p. 498], the Jury stability test [16, Sect. 4.3,
p. 185] or the method based on transforming the unit disc into the left half-plane [16, Sect. 4.3, p. 191].

The condition of the Schur stability of the characteristic polynomial χ(λ) is a necessary and
sufficient condition for the asymptotic stability of the difference equation (1.1) or the system (1.3),
respectively.

Similarly, consider a linear differential equation of the nth order with constant coefficients

x(n) + q1x(n−1) + q2x(n−2) + . . . + qnx = 0, (1.5)

t ∈ R, x ∈ R, q j ∈ R, j = 1, n.

Some polynomial (1.4) is said to be Hurwitz stable if all its roots lie in the open left half-plane of
the complex plane. The condition of the Hurwitz stability of the characteristic polynomial ψ(λ) =
λn + q1λ

n−1 + . . . + qn of Eq (1.5) is a necessary and sufficient condition for the asymptotic stability of
the differential equation (1.5).

If the coefficients q j of Eq (1.5) are not constant, then there is no such connection between the roots
of the characteristic polynomial and the asymptotic stability of (systems of) differential equations (see,
for example, [17, Ch. IV, § 9], [18, p. 3], [19]). These issues were discussed in a recent work [20]. In
addition, in [20] it was proved that the analog of Kharitonov’s theorem on robust stability does not hold
if the coefficients of the differential equation (1.5) are not constant.

In the present work, we show that there is no such connection for (systems of) difference equations
either. In addition, it is known that some analogs of Kharitonov’s theorems on robust stability take
place for systems with discrete time. We will prove that these assertions do not hold if the coefficients
of the equation are not constant, i.e., the condition for the coefficients of the equation (system) to be
constant is essential in these robust stability theorems.

The paper is organized as follows. In Section 2, we prove that, for a linear time-varying system
with discrete time, the condition of the Schur stability of the characteristic polynomial of the matrix of
the system is neither sufficient nor necessary for the asymptotic stability of the system. In Section 3,
we formulate similar Theorems 1 and 2 for a linear difference equation with time-varying coefficients
saying that the condition of the Schur stability of the characteristic polynomial of the equation is
neither sufficient nor necessary for the asymptotic stability of the equation. In Section 4, we formulate
Theorem 5 saying that, for a linear difference equation with time-varying coefficients, the condition
of the Schur stability of every characteristic polynomial in the family of the edge polynomials is not
sufficient for the asymptotic stability of the family of interval polynomials. In Section 5, we give the
proof of Theorems 5 and 1. In Section 6, we give the proof of Theorem 2. In Section 7, we show that
the (counter)examples given in the previous sections are not valid when the dimension of the equation
is equal to 1. In Section 8, conclusions are given.

AIMS Mathematics Volume 8, Issue 10, 23734–23746.



23736

2. Asymptotic stability of a linear time-varying system with discrete time

Consider a linear discrete-time system of equations with time-varying coefficients

z(t + 1) = A(t)z(t), t ∈ Z, z ∈ Rn. (2.1)

Proposition 1. There exists a system (2.1) such that the following properties hold:
(1) System (2.1) is unstable.
(2) The characteristic polynomial of the matrix of the system (2.1) has constant coefficients and is

Schur stable.

Proof. Take a system
ξ(t + 1) = Bξ(t), t ∈ Z, ξ ∈ Rn, (2.2)

where n = 2, with the constant matrix

B =
[

1 1/2
1/2 1

]
. (2.3)

The characteristic polynomial of the matrix (2.3) is λ2 − 2λ+ 3/4. Its roots are λ1 = 1/2, λ2 = 3/2. We
have λ2 > 1. Hence, the system (2.2), (2.3) is unstable.

Construct the matrix

L(t) =
[
1 0
0 1

]
, t = 2k; L(t) =

[
0 −1
1 0

]
, t = 2k + 1; k ∈ Z. (2.4)

Then, the matrix L(t) is periodic and supt∈Z

(
∥L(t)∥ + ∥L−1(t)∥

)
< +∞. Let us make a transformation

z(t) = L(t)ξ(t). (2.5)

Then, this transformation is a Lyapunov transformation (see [21, p. 15]). Therefore, it preserves the
properties of (asymptotic) stability and instability. The transformation (2.5) reduces system (2.2) to
system (2.1) where

A(t) = L(t + 1)BL−1(t). (2.6)

Calculating the matrix A(t) by the formula (2.6), from (2.3) and (2.4) we get

A(t) =
[
−1/2 −1

1 1/2

]
, t = 2k; A(t) =

[
−1/2 1
−1 1/2

]
, t = 2k + 1; k ∈ Z. (2.7)

The system (2.1) with the matrix (2.7) is unstable because the system (2.2), (2.3) is unstable. For any
t ∈ Z, the characteristic polynomial of the matrix (2.7) is equal to λ2+3/4. Its roots are λ1,2 = ±i

√
3/2.

We have |λ1| = |λ2| =
√

3/2 < 1, i.e., the characteristic polynomial is Schur stable. □

Proposition 2. There exists a system (2.1) such that the following properties hold:
(1) System (2.1) is asymptotically stable.
(2) The characteristic polynomial of the matrix of the system (2.1) has constant coefficients and is

not Schur stable.
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Proof. Take a system (2.2), where n = 2 with the constant matrix

B =
[
1/2 −1/2
1/2 1/2

]
. (2.8)

The characteristic polynomial of the matrix (2.8) is λ2−λ+1/2. Its roots are λ1 = (1+i)/2, λ2 = (1−i)/2.
We have |λ1| = |λ2| = 1/

√
2 < 1. Hence, the system (2.2), (2.8) is asymptotically stable.

Construct the matrix

L(t) =
[
0 1/2
2 0

]
, t = 2k; L(t) =

[
0 2

1/2 0

]
, t = 2k + 1; k ∈ Z. (2.9)

Then, the matrix L(t) is periodic and supt∈Z

(
∥L(t)∥ + ∥L−1(t)∥

)
< +∞. Let us make a

transformation (2.5). Then, this transformation is a Lyapunov transformation. The transformation (2.5)
reduces system (2.2) to system (2.1) where A(t) is defined by the equality (2.6). Calculating the matrix
A(t) by the formula (2.6), from (2.8) and (2.9) we get

A(t) =
[

2 1/2
−1/2 1/8

]
, t = 2k; A(t) =

[
1/8 1/2
−1/2 2

]
, t = 2k + 1; k ∈ Z. (2.10)

The system (2.1) with the matrix (2.10) is asymptotically stable because the system (2.2), (2.8) is
asymptotically stable. For any t ∈ Z, the characteristic polynomial of the matrix (2.10) is equal to
λ2 − (17/8)λ + (1/2). Its roots are λ1 = (17 +

√
161)/16, λ2 = (17 −

√
161)/16. We have λ1 > 1, i.e.,

the characteristic polynomial is not Schur stable. □

Remark 1. Similar examples for systems of differential equations are given in [20, Sect. 1].

Remark 2. Examples in Propositions 1 and 2 can be constructed for any n ≥ 2. To do this, it suffices to

take as the matrix A(t) the block n×n-matrix An(t) =
[
0 0
0 A2(t)

]
, where A2(t) is 2×2-matrix constructed

in the corresponding Proposition 1 or 2. For n = 1 such examples cannot be constructed (see Sect. 7).

3. Asymptotic stability of a linear difference equation with time-varying coefficients

Now, consider the linear difference equation of order n with time-varying coefficients

x(t + n) + p1(t)x(t + n − 1) + . . . + pn(t)x(t) = 0, (3.1)

t ∈ Z, x ∈ R, p j(t) ∈ R, j = 1, n.

We suppose that the functions p j(·), j = 1, n, are bounded: a j ≤ p j(t) ≤ b j, j = 1, n, t ∈ Z.
Using the Eq (3.1), we construct the characteristic polynomial

χ(t, λ) = λn + p1(t)λn−1 + . . . + pn(t). (3.2)

Obviously, it also has time-varying coefficients. Suppose that for every t ∈ Z the polynomial (3.2)
is Schur stable. Will this condition be necessary and/or sufficient for the asymptotic stability of the
Eq (3.1)? Note that the above examples do not answer this question for the Eq (3.1). We will prove
that the answer to this question is negative. The following theorems hold.
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Theorem 1. Let n ≥ 2. There exist bounded functions p j : Z → R, j = 1, n, such that for every t ∈ Z,
the polynomial (3.2) is Schur stable and Eq (3.1) is unstable.

Theorem 2. Let n ≥ 2. There exist bounded functions p j : Z → R, j = 1, n, such that for every t ∈ Z,
the polynomial (3.2) is not Schur stable and Eq (3.1) is asymptotically stable.

The proofs of Theorems 1, 2 will be given below.

Remark 3. Similar theorems for linear differential equations are established in [20, Theorems 1, 2].

4. Robust stability

Consider a linear differential equation (1.5) with constant coefficients. Suppose that the coefficients
of the equation (1.5) are unknown and satisfy the constraints a j ≤ q j ≤ b j, j = 1, n. The famous
Kharitonov’s theorem [22] on robust stability (the stability of a family of interval polynomials) says
that every polynomial in the family of interval polynomials is Hurwitz stable if and only if the four
(Kharitonov’s) polynomials located at the vertices of the family of interval polynomials are Hurwitz
stable (see the formulation in [8, Ch. 5, Sect. 5.2, Theorem 5.1] as well). It was shown in [20] that if
the coefficients of the differential equation (1.5) are not constant, then Kharitonov’s theorem on robust
stability does not hold.

Let us consider similar issues for difference equations. For equations with discrete time, the analog
of Kharitonov’s theorem on robust stability does not hold in the general case. The Schur stability
of four vertex polynomials and even of all vertex polynomials of an interval family of polynomials
does not imply the Schur stability of all polynomials of the interval family [23], see also [8, Ch. 5,
Sect. 5.8, Example 5.8] and [8, Ch. 5, Sect. 5.8, Example 5.9]. Nevertheless, certain analogs of the
stability theorem for an interval family of polynomials hold for systems with discrete time. Let us
recall the formulations of these theorems.

Consider a family I(λ) of real polynomials of degree n of the form

φ(λ) = s0λ
n + s1λ

n−1 + . . . + sn−1λ + sn,

whose coefficients belong to the box

Π := {s := (s0, . . . , sn) ∈ Rn+1 : a j ≤ s j ≤ b j, j = 0, n}.

Let us introduce vertices V and edges E of the box Π:

V := {s := (s0, . . . , sn) ∈ Rn+1 : s j = a j or s j = b j, j = 0, n},

Ek := {s := (s0, . . . , sn) ∈ Rn+1 : s j = a j or s j = b j, j = 0, n, j , k, sk ∈ [ak, bk]},

and E =
⋃n

k=0 Ek. The corresponding family of vertex and edge polynomials will be denoted by

IV(λ) := {φ(λ) = s0λ
n + s1λ

n−1 + . . . + sn−1λ + sn, (s0, . . . , sn) ∈ V},

IE(λ) := {φ(λ) = s0λ
n + s1λ

n−1 + . . . + sn−1λ + sn, (s0, . . . , sn) ∈ E}.

The following theorem is true (see [24, 25], [7, Sect. 13.3]).
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Theorem 3. Let n ≤ 3 and a0 = b0 = 1. Every polynomial in the family I(λ) is Schur stable if and
only if every polynomial in the family IV(λ) is Schur stable.

Thus, the analog of Kharitonov’s theorem for difference equations expressed in terms of vertex
polynomials holds only for n ≤ 3. For n ≥ 4 there are corresponding counterexamples [8, 23].

For an arbitrary n, the Schur stability is characterized not by vertex polynomials but by edge
polynomials [26], [8, Theorem 5.13].

Theorem 4. Let 0 < [a0, b0]. Every polynomial in the family I(λ) is Schur stable if and only if every
polynomial in the family IE(λ) is Schur stable.

Note that Theorem 4 can be strengthened (see [8, Theorem 5.14]), and the number of edge
polynomials that need to be examined for Schur stability in Theorem 4 can be reduced.

Consider a linear difference equation of the nth order (1.1) with constant coefficients. Suppose
that the exact values of the coefficients p j, j = 1, n, are unknown, but their upper and lower
bounds a j ≤ p j ≤ b j, j = 1, n, are known. The question of the asymptotic stability of Eq (1.1)
(or a family of Eq (1.1)) belongs to the problem of robust stability. Since for the equation with
constant coefficients (1.1) its asymptotic stability reduces to the Schur stability of its characteristic
polynomial (1.2), Theorems 3 and 4 give a criterion for the asymptotic stability of the family of
Eq (1.1).

Consider now the linear difference equation of the nth order with unknown time-varying coefficients

x(t + n) + p1(t)x(t + n − 1) + . . . + pn(t)x(t) = 0, (4.1)

t ∈ Z, x ∈ R, p j(t) ∈ R, j = 1, n.

Suppose that the functions p j(·), j = 1, n, are bounded:

a j ≤ p j(t) ≤ b j, j = 1, n, t ∈ R. (4.2)

Set a0 := b0 := 1. Consider the set of vertices IV(λ) and edges IE(λ) of the family I(λ). Let us pose
the following questions. Is it a sufficient condition for the asymptotic stability of the Eq (4.1):

(a) the condition of the Schur stability for any polynomial in the family IV(λ) (for n ≤ 3);
(b) the condition of the Schur stability for any polynomial in the family IE(λ)?
We will prove that the answers to these questions are negative. This is proved by the following

theorem.

Theorem 5. For any n ≥ 2 there exist numbers a j, b j and functions p j : Z→ R, j = 1, n, such that the
following properties hold:

(1) Inequalities (4.2) are satisfied.
(2) Every polynomial in the family IE(λ) is Schur stable.
(3) The Eq (4.1) is unstable.

Remark 4. A similar theorem for a linear differential equation was established in [20, Theorem 5].
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5. Proof of Theorem 5

(n = 2). Set a1 := −
√

2, b1 :=
√

2, a2 := b2 := 1/2. Then

I(λ) = IE(λ) = {φ(λ) = λ2 + s1λ + s2 : s1 ∈ [−
√

2,
√

2], s2 = 1/2}.

Let λ1, λ2 be the roots of the quadratic polynomial λ2 + s1λ + 1/2. Its discriminant is D = s2
1 − 2. If

s1 ∈ [−
√

2,
√

2], then D ∈ [−2, 0]. Therefore, λ1,2 = (−s1 ± i
√
−D)/2. Hence, |λ1| = |λ2| = 1/

√
2.

Therefore, every polynomial from IE(λ) is Schur stable.
Define the functions

p1(t) :=

 −
√

2, t = 2k,
√

2, t = 2k + 1,
k ∈ Z, p2(t) := 1/2, t ∈ Z. (5.1)

Then inequalities (4.2) are satisfied.
Let us prove that the equation

x(t + 2) + p1(t)x(t + 1) + p2(t)x(t) = 0 (5.2)

with coefficients (5.1) is unstable. We make the change of variables z1(t) = x(t), z2(t) = x(t + 1), t ∈ Z,
in the Eq (5.2); denote z := [z1, z2]T ∈ R2. The Eq (5.2) is transformed into a system of difference
equations

z(t + 1) = A(t)z(t), t ∈ Z, z ∈ R2, (5.3)

with the matrix

A(t) =

A0, t = 2k,

A1, t = 2k + 1,
k ∈ Z, A0 =

[
0 1
−1/2

√
2

]
, A1 =

[
0 1
−1/2 −

√
2

]
.

The system (5.3) is periodic with the periodω = 2. Denote by Z(t, s) the Cauchy matrix of system (5.3),
i.e., a solution of the matrix initial value problem Z(t + 1) = A(t)Z(t), Z(s) = I (I ∈ M2,2 is the identity
matrix; here and below we denote by Mp,q the space of real p× q-matrices). Calculate the monodromy
matrix Ψ := Z(2, 0). We get

Ψ = A1A0 =

[
0 1
−1/2 −

√
2

]
·

[
0 1
−1/2

√
2

]
=

[
−1/2

√
2

√
2/2 −5/2

]
.

The characteristic polynomial of the matrix Ψ is λ2 + 3λ + 1/4. Its roots are λ1 = −(3 + 2
√

2)/2,
λ2 = −(3 − 2

√
2)/2. We have |λ1| > 1. Hence, the system (5.3) is unstable. Therefore, the Eq (5.2) is

unstable.
(n > 2). Set a1 := −

√
2, b1 :=

√
2, a2 := b2 := 1/2, a j := b j := 0, j = 3, n. Then

I(λ) = IE(λ) = {φ(λ) = λn + s1λ
n−1 + s2λ

n−2 : s1 ∈ [−
√

2,
√

2], s2 = 1/2}.

We have λn + s1λ
n−1 + λn−2/2 = λn−2(λ2 + s1λ + 1/2). Then, for roots λ j, j = 1, n, of this polynomial,

we have: |λ1| = |λ2| = 1/
√

2, λ3 = . . . = λn = 0. Therefore, every polynomial from IE(λ) is Schur
stable.
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Define the functions

p1(t) :=

 −
√

2, t = 2k,
√

2, t = 2k + 1,
k ∈ Z, p2(t) := 1/2, p j(t) := 0, j = 3, n, t ∈ Z. (5.4)

Then, inequalities (4.2) are satisfied.
Let us prove that the Eq (4.1) with coefficients (5.4) is unstable. We make the change of variables

y1(t) = x(t), y2(t) = x(t+1), . . . , yn(t) = x(t+n−1), t ∈ Z, in the Eq (4.1); denote y := [y1, . . . , yn]T ∈ Rn.
The Eq (4.1) is transformed into a system of difference equations

y(t + 1) = B(t)y(t), t ∈ Z, y ∈ Rn, (5.5)

with the matrix

B(t) =

B0, t = 2k,

B1, t = 2k + 1,
k ∈ Z, where B0 =

[
F1 F2

F3 P

]
, B1 =

[
F1 F2

F3 Q

]
,

F1 = 0 ∈ Mn−1,1, F2 = I ∈ Mn−1,n−1, F3 = 0 ∈ M1,n−2,

P =
[
−1/2

√
2
]
∈ M1,2, Q =

[
−1/2 −

√
2
]
∈ M1,2.

The system (5.5) is periodic with the periodω = 2. Denote by Y(t, s) the Cauchy matrix of system (5.5).
Calculate the monodromy matrix Φ := Y(2, 0). We get

Φ = B1B0 =

[
G1 G2

G3 G4

]
,

G1 = 0 ∈ Mn−2,2, G2 = I ∈ Mn−2,n−2, G3 = 0 ∈ M2,n−2, G4 = Ψ ∈ M2,2.

The characteristic polynomial of the matrix Φ is (λ2 + 3λ + 1/4)λn−2. Its roots are λ1 = −(3 + 2
√

2)/2,
λ2 = −(3 − 2

√
2)/2, λ j = 0, j = 3, n. We have |λ1| > 1. Hence, the system (5.5) is unstable. Therefore,

the Eq (4.1) is unstable.

Remark 5. Theorem 5 proves that the answer to the question (b) is negative for every n ≥ 2.
Furthermore, since IV(λ) ⊂ IE(λ), it follows from Theorem 5 that the answer to the question (a)
is also negative for n = 2 and n = 3.

Remark 6. The example of a system given in the proof of Theorem 5 obviously provides an example of
a system for Theorem 1. Thus, together with the proof of Theorem 5, Theorem 1 is also proved.

6. Proof of Theorem 2

(n = 2). Define the functions

p1(t) :=

 − 1, t = 2k,

1, t = 2k + 1,
k ∈ Z, p2(t) := −1/2, t ∈ Z. (6.1)

If t = 2k, then the polynomial (3.2) is λ2 − λ − 1/2. Its roots are λ1 = (1 +
√

3)/2, λ2 = (1 −
√

3)/2.
We have |λ1| > 1. Hence, the polynomial (3.2) is not Schur stable.

AIMS Mathematics Volume 8, Issue 10, 23734–23746.



23742

If t = 2k + 1, then the polynomial (3.2) is λ2 + λ − 1/2. Its roots are λ1 = (−1 +
√

3)/2, λ2 =

(−1 −
√

3)/2. We have |λ2| > 1. Hence, the polynomial (3.2) is not Schur stable.
Let us prove that the Eq (3.1) with coefficients (6.1) is asymptotically stable. We make the change

of variables z1(t) = x(t), z2(t) = x(t + 1), t ∈ Z, in the Eq (3.1); denote z := [z1, z2]T ∈ R2. The Eq (3.1)
is transformed into a system of difference equations

z(t + 1) = A(t)z(t), t ∈ Z, z ∈ R2, (6.2)

with the matrix

A(t) =

A0, t = 2k,

A1, t = 2k + 1,
k ∈ Z, A0 =

[
0 1

1/2 1

]
, A1 =

[
0 1

1/2 −1

]
.

The system (6.2) is periodic with the periodω = 2. Denote by Z(t, s) the Cauchy matrix of system (6.2).
Calculate the monodromy matrix Ψ := Z(2, 0). We get

Ψ = A1A0 =

[
0 1

1/2 −1

]
·

[
0 1

1/2 1

]
=

[
1/2 1
−1/2 −1/2

]
.

The characteristic polynomial of the matrix Ψ is λ2 + 1/4. Its roots are λ1,2 = ±i/2. We have |λ1| =

|λ2| < 1. Hence, the system (6.2) is asymptotically stable. Therefore, the Eq (3.1) is asymptotically
stable.

(n > 2). Define the functions

p1(t) :=

 − 1, t = 2k,

1, t = 2k + 1,
k ∈ Z, p2(t) := −1/2, p j(t) := 0, j = 3, n, t ∈ Z. (6.3)

If t = 2k, then the polynomial (3.2) is (λ2 − λ − 1/2)λn−2. Its roots are λ1 = (1 +
√

3)/2, λ2 =

(1 −
√

3)/2, λ j = 0, j = 3, n. We have |λ1| > 1. Hence, the polynomial (3.2) is not Schur stable.
If t = 2k + 1, then the polynomial (3.2) is (λ2 + λ − 1/2)λn−2. Its roots are λ1 = (−1 +

√
3)/2,

λ2 = (−1 −
√

3)/2, λ j = 0, j = 3, n. We have |λ2| > 1. Hence, the polynomial (3.2) is not Schur stable.
Let us prove that the Eq (3.1) with coefficients (6.3) is asymptotically stable. We make the change

of variables y1(t) = x(t), y2(t) = x(t + 1), . . . , yn(t) = x(t + n − 1), t ∈ Z, in the Eq (3.1) and denote
y := [y1, . . . , yn]T ∈ Rn. The Eq (3.1) is transformed into a system of difference equations

y(t + 1) = B(t)y(t), t ∈ Z, y ∈ Rn, (6.4)

with the matrix

B(t) =

B0, t = 2k,

B1, t = 2k + 1,
k ∈ Z, where B0 =

[
F1 F2

F3 P

]
, B1 =

[
F1 F2

F3 Q

]
,

F1 = 0 ∈ Mn−1,1, F2 = I ∈ Mn−1,n−1, F3 = 0 ∈ M1,n−2,

P =
[
1/2 1

]
∈ M1,2, Q =

[
1/2 −1

]
∈ M1,2.
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The system (6.4) is periodic with the periodω = 2. Denote by Y(t, s) the Cauchy matrix of system (6.4).
Calculate the monodromy matrix Φ := Y(2, 0). We get

Φ = B1B0 =

[
G1 G2

G3 G4

]
,

G1 = 0 ∈ Mn−2,2, G2 = I ∈ Mn−2,n−2, G3 = 0 ∈ M2,n−2, G4 = Ψ ∈ M2,2.

The characteristic polynomial of the matrix Φ is (λ2 + 1/4)λn−2. Its roots are λ1,2 = ±i/2, λ j = 0,
j = 3, n. We have |λ j| < 1, j = 1, n. Hence, the system (6.4) is asymptotically stable. Therefore, the
Eq (3.1) is asymptotically stable.

7. The case n = 1

Let us discuss whether it is possible to construct the corresponding examples in Theorems 1, 2, 5
for n = 1. Consider an equation

x(t + 1) + p1(t)x(t) = 0, t ∈ Z, x ∈ R, p1(t) ∈ R. (7.1)

A general solution of Eq (7.1) has the form

x(t) = C
t−1∏
τ=t0

p1(τ). (7.2)

Assume that the function p1(t) satisfies the condition

a1 ≤ p1(t) ≤ b1, t ∈ Z. (7.3)

Let every polynomial from IE(λ) (and hence, from I(λ)) be Schur stable. Then,

−1 < a1 ≤ b1 < 1. (7.4)

Then, it follows from (7.2)–(7.4) that |x(t)| → 0 as t → +∞. Hence, the Eq (7.1) is necessarily
asymptotically stable. Thus, it is impossible to construct the corresponding example in Theorem 5 for
n = 1.

If for every t ∈ Z the polynomial
λ + p1(t) (7.5)

is Schur stable, then −1 < p1(t) < 1 for all t ∈ Z. Then,

∣∣∣∣∣∣ ∞∏τ=t0
p1(τ)

∣∣∣∣∣∣ ≤ 1, i.e., the Eq (7.1) is Lyapunov

stable. Thus, it is impossible to construct the corresponding example in Theorem 1 for n = 1.
Further, if, for every t ∈ Z, the polynomial (7.5) is not Schur stable, then |p1(t)| ≥ 1. Then, the

general solution (7.2) of Eq (7.1) satisfies the inequality

|x(t)| = |C|

∣∣∣∣∣∣∣
t−1∏
τ=t0

p1(τ)

∣∣∣∣∣∣∣ = |C|
t−1∏
τ=t0

|p1(τ)| ≥ |C|, t ≥ t0.

Consequently, Eq (7.1) is not asymptotically stable. Hence, it is also impossible to construct the
corresponding example in Theorem 2 for n = 1.
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8. Conclusions

For linear difference equations and systems, a number of (counter) examples are given showing that
the condition for the coefficients of the equation (system) to be constant is an essential condition in
theorems on the relationship between the property of asymptotic stability for the difference equation
(system) and the property of the Schur stability for the characteristic polynomial of the equation
(system). Also, we have proved that the analog of Kharitonov’s theorem on robust stability and the
edge theorem do not hold for a difference equation if the coefficients of the equation are time-varying.
The results of the paper are new. In particular, they answer questions (a) and (b) before Theorem 5.
In earlier works, there were no answers to these questions. We believe that the results obtained can
be useful in the problems of robust stabilization of discrete-time control systems with time-varying
coefficients.
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